Những câu hỏi liên quan
Võ Huy Hoàng
Xem chi tiết
Trần Quốc Thắng
9 tháng 4 2021 lúc 20:13

ĐỊT MẸ

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Thành Nam
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 2 2020 lúc 6:09

Đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\)

BĐT cần chứng minh: \(\frac{a+b}{c^2}+\frac{b+c}{a^2}+\frac{c+a}{b^2}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(VT=a\left(\frac{1}{b^2}+\frac{1}{c^2}\right)+b\left(\frac{1}{a^2}+\frac{1}{c^2}\right)+c\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\ge2\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\)

Mà: \(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\) ; \(\frac{a}{bc}+\frac{b}{ac}\ge\frac{2}{c}\) ; \(\frac{c}{ab}+\frac{b}{ac}\ge\frac{2}{a}\)

\(\Rightarrow2\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow VT\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
Bao Nguyen Trong
Xem chi tiết
NGUYEN ANH
Xem chi tiết
Diệu Huyền
25 tháng 11 2019 lúc 11:29

Căn bậc hai. Căn bậc ba

Bình luận (0)
 Khách vãng lai đã xóa
%Hz@
Xem chi tiết
Không Tên
25 tháng 2 2020 lúc 13:22

\(1=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{z}\right)+\frac{1}{2}\left(\frac{y}{z}+\frac{z}{x}\right)+\frac{1}{2}\left(\frac{z}{x}+\frac{x}{y}\right)\)

\(\ge\sqrt{\frac{x}{y}.\frac{y}{z}}+\sqrt{\frac{y}{z}.\frac{z}{x}}+\sqrt{\frac{z}{x}.\frac{x}{y}}=VP\) (rút gọn lại thôi:v)

Bình luận (0)
 Khách vãng lai đã xóa
Kiều_My
Xem chi tiết
VRCT_Ran Love Shinichi
Xem chi tiết
Trần Phúc Khang
4 tháng 6 2019 lúc 14:55

Đặt \(a=\sqrt{x},b=\sqrt{y},c=\sqrt{z}\left(a,b,c>0\right)\)

Khi đó 

\(P=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)và \(a^2+b^2+c^2\ge3\)

<=>\(P=\frac{a^4}{a^2b}+\frac{b^4}{cb^2}+\frac{c^4}{ac^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+cb^2+ac^2}\)(bất đẳng thức cosi schwaz)

Ta có 

\(\left(a+b+c\right)\left(a^2+b^2+c^2\right)=\left(a^3+b^2a\right)+\left(b^3+bc^2\right)+\left(c^3+ca^2\right)+\left(a^2b+b^2c+c^2a\right)\)

                                                        \(\ge3\left(a^2b+b^2c+c^2a\right)\)

=> \(a^2b+b^2c+c^2a\le\frac{1}{3}\left(a+b+c\right)\left(a^2+b^2+c^2\right)\le\frac{\sqrt{3}}{3}\sqrt{\left(a^2+b^2+c^2\right)^3}\)

Khi đó 

\(P\ge\sqrt{3}.\frac{\left(a^2+b^2+c^2\right)^2}{\sqrt{\left(a^2+b^2+c^2\right)^3}}=\sqrt{3\left(a^2+b^2+c^2\right)}\ge3\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=1 => x=y=z=1

Bình luận (0)
Hiếu Lê
Xem chi tiết
Tran Le Khanh Linh
19 tháng 8 2020 lúc 21:08

Đặt \(P=\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Do x,y,z là các số thực dương nên ta biến đổi \(P=\frac{1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{\sqrt{1+\frac{1}{y^2}}}+\frac{1}{\sqrt{1+\frac{1}{z^2}}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Đặt \(a=\frac{1}{x^2};b=\frac{1}{y^2};c=\frac{1}{z^2}\left(a,b,c>0\right)\)thì \(xy+yz+zx=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}=1\)và \(P=\frac{1}{\sqrt{1+a}}+\frac{1}{\sqrt{1+b}}+\frac{1}{\sqrt{1+c}}+a+b+c\)

Biến đổi biểu thức P=\(\left(\frac{1}{2\sqrt{a+1}}+\frac{1}{2\sqrt{a+1}}+\frac{a+1}{16}\right)+\left(\frac{1}{2\sqrt{b+1}}+\frac{1}{2\sqrt{b+1}}+\frac{b+1}{16}\right)\)\(+\left(\frac{1}{2\sqrt{c+1}}+\frac{1}{2\sqrt{c+1}}+\frac{c+1}{16}\right)+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{b}-\frac{3}{16}\)

Áp dụng Bất Đẳng Thức Cauchy ta có

\(P\ge3\sqrt[3]{\frac{a+1}{64\left(a+1\right)}}+3\sqrt[3]{\frac{b+1}{64\left(b+1\right)}}+3\sqrt[3]{\frac{c+1}{64\left(c+1\right)}}+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{16}-\frac{3}{16}\)

\(=\frac{33}{16}+\frac{15}{16}\left(a+b+c\right)\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{abc}\)

Mặt khác ta có \(1=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\ge3\sqrt[3]{\frac{1}{abc}}\Leftrightarrow abc\ge27\)

\(\Rightarrow P\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{27}=\frac{33}{16}+\frac{15}{16}\cdot9=\frac{21}{2}\)

Dấu "=" xảy ra khi a=b=c hay \(x=y=z=\frac{\sqrt{3}}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
Bình Minh Trần
Xem chi tiết
Girl
13 tháng 10 2018 lúc 19:38

\(\sqrt{x\left(y+z\right)}\le\frac{x+y+z}{2}\)( Cauchy)

\(\Rightarrow\sqrt{\frac{x}{y+z}}=\frac{x}{\sqrt{x\left(y+z\right)}}\le\frac{x}{\frac{x+y+z}{2}}=\frac{2x}{x+y+z}\)

Chứng minh tương tự:

\(\sqrt{\frac{y}{x+z}}\le\frac{2y}{x+y+z};\sqrt{\frac{z}{x+y}}\le\frac{2z}{x+y+z}\)

Cộng theo vế suy ra đocn. Dấu "=" ko xảy ra

Bình luận (0)