cho \(P\left(x\right)=x^4-4x^3+7x^2-8x+14\)
chứng minh rằng
\(P\left(a\right).P\left(b\right)P\left(c\right)\ge144\left(ab+bc+ca\right)\)
chứng minh rằng
\(\left(x+a\right)\left(x+b\right)\left(x+c\right)=x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc\)
Cho 3 số thực a,b,c chứng minh rằng:
\(ab\left(b^2+bc+ca\right)+bc\left(c^2+ac+ab\right)+ca\left(a^2+ab+bc\right)\le\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)\)
Lời giải:
Ba số thực $a,b,c$ cần có thêm điều kiện không âm mới đúng.
BĐT cần chứng minh tương đương với:
$ab^3+bc^3+ca^3+2abc(a+b+c)\leq a^3b+b^3c+c^3a+ab^3+bc^3+ca^3+abc(a+b+c)$
$\Leftrightarrow abc(a+b+c)\leq a^3b+b^3c+c^3a(*)$
Áp dụng BĐT Bunhiacopxky:
$(a^3b+b^3c+c^3a)(abc^2+bca^2+cab^2)\geq (a^2bc+b^2ca+c^2ab)^2$
$\Rightarrow a^3b+b^3c+c^3a\geq abc(a+b+c)$
BĐT $(*)$ đúng nên ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
SOS là ra, khá đơn giản. Ta có:
$$\text{VP}-\text{VT}=ab \left( -c+a \right) ^{2}+ca \left( b-c \right) ^{2}+cb \left( a-b
\right) ^{2}\geqq 0.$$
Đẳng thức xảy ra khi $a=b=c.$
Cho 3 số thực a,b,c chứng minh rằng:
\(ab\left(b^2+bc+ca\right)+bc\left(c^2+ac+ab\right)+ca\left(a^2+ab+bc\right)\le\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)\)
a,b,c>0
\(VP-VT=a^3b+b^3c+c^3a-abc\left(a+b+c\right)=abc\Sigma\frac{\left(a-b\right)^2}{a}\ge0\)
Cho ba số thực a, b, c. Chứng minh rằng:\(\left(a^2-bc\right)^3+\left(b^2-ca\right)^3+\left(c^2-ab\right)^3\ge3\left(a^2-bc\right)\left(b^2-ca\right)\left(c^2-ab\right)\)
Đặt \(\left\{{}\begin{matrix}a^2-bc=x\\b^2-ca=y\\c^2-ab=z\end{matrix}\right.\)
\(\Rightarrow x+y+z\ge0\)
\(\)Đẳng thức cần c/m trở thành: \(x^3+y^3+z^3\ge3xyz\left(1\right)\)
Áp dụng Bất đẳng thức AM-GM cho 3 số x,y,z, ta có:
\(x^3+y^3+z^3\ge3\sqrt[3]{x^3.y^3.z^3}=3xyz\)
=> Đẳng thức (1) luôn đúng với mọi x
Dấu = xảy ra khi: x=y=z hay \(a^2-bc=b^2-ca=c^2-ab\)
và \(a^2+b^2+c^2-\left(ab+bc+ca\right)=0\)\(\Rightarrow a=b=c\)
Cho a,b,c khác 0 và cho x,y,z tùy ý. Chứng minh rằng: \(\frac{bc\left(a-x\right)\left(a-y\right)\left(a-z\right)}{\left(a-b\right)\left(a-c\right)}+\frac{ca\left(b-x\right)\left(b-y\right)\left(b-z\right)}{\left(b-c\right)\left(b-a\right)}+\frac{ab\left(c-x\right)\left(c-y\right)\left(c-z\right)}{\left(c-a\right)\left(c-b\right)}=abc-xyz\)
Chứng minh biểu thức sau không phụ thuộc vào giá trị của biến:
A=\(^{x^2}-4x-x\left(x-4\right)-15\)
B=\(5x\left(x^2-x\right)-x^2\left(5x-5\right)-13\)
C=\(-3x\left(x-5\right)+3\left(x^2-4x\right)-3x+7\)
D=\(7\left(x^2-5x+3\right)-x\left(7x-35\right)-14\)
E=\(4x\left(x^2-7+2\right)-4\left(x^3-7x+2x-5\right)\)
H=\(x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
\(A=x^2-4x-x\left(x-4\right)-15\)
\(=x^2-4x-x^2+4x-15=-15\) => đpcm
\(B=5x\left(x^2-x\right)-x^2\left(5x-5\right)-13\)
\(=5x^3-5x^2-5x^3+5x^2-13=-13\) => đpcm
\(C=-3x\left(x-5\right)+3\left(x^2-4x\right)-3x+7\)
\(=-3x^2+15x+3x^2-12x-3x+7=7\) => đpcm
\(D=7\left(x^2-5x+3\right)-x\left(7x-35\right)-14\)
\(=7x^2-35x+21-7x^2+35x-14=7\) => đpcm
\(E=4x\left(x^2-7+2\right)-4\left(x^3-7x+2x-5\right)\)
\(=4x^3-20x-4x^3+20x+20=20\) => đpcm
\(H=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
\(=5x^2-3x-x^3+x^2+x^3-6x^2-10x+3x=-10\) => đpcm
Cho các số thực dương a, b, c. Chứng minh rằng:
\(\sqrt{c^2\left(a^2+b^2\right)^2+a^2\left(b^2+c^2\right)^2+b^2\left(c^2+a^2\right)^2}\ge\frac{54\left(abc\right)^3}{\left(a+b+c\right)^2\sqrt{\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4}}\)
\(\Leftrightarrow\left(\Sigma a\right)^4\left(\Sigma a^4b^4\right)\left[\Sigma c^2\left(a^2+b^2\right)^2\right]\ge54^2\left(abc\right)^6\)
Giả sử \(c=\text{min}\left\{a,b,c\right\}\)và đặt \(a=c+u,b=c+v\) thì nhận được một BĐT hiển nhiên :P
Theo BĐT AM-GM ta có:
\(c^2\left(a^2+b^2\right)^2+a^2\left(b^2+c^2\right)^2+b^2\left(c^2+a^2\right)\ge3\sqrt[3]{\left(abc\right)^2\left[\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\right]^2}\)
\(\ge3\sqrt[3]{\left(abc\right)^264\left(abc\right)^4}=12\left(abc\right)^2\)
=> \(\sqrt{c^2\left(a^2+b^2\right)^2+a^2\left(b^2+c^2\right)^2+b^2\left(a^2+c^2\right)^2}\ge2\sqrt{3}abc\)
Cũng theo BĐT AM-GM \(\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4\ge3\sqrt[3]{\left(ab\right)^4\left(bc\right)^4\left(ca\right)^4}=3\left(abc\right)^2\sqrt[3]{\left(abc\right)^2}\)
=> \(\sqrt{\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4}\ge\sqrt{3}\cdot abc\sqrt[3]{abc}\)và \(\left(a+b+c\right)^2\ge9\sqrt[3]{\left(abc\right)^2}\)
=> \(\sqrt{c^2\left(a^2+b^2\right)^2+a^2\left(b^2+c^2\right)^2+b^2\left(c^2+a^2\right)^2}\cdot\left(a+b+c\right)^2\cdot\sqrt{\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4}\)
\(\ge2\sqrt{3}\left(abc\right)\cdot\sqrt{3}\left(abc\right)\sqrt[3]{abc}\cdot9\sqrt[3]{\left(abc\right)^2}\ge54\left(abc\right)^3\)
Dấu "=" xảy ra <=> a=b=c
\(\hept{\begin{cases}54&A,B,C^2&\end{cases}}\)\(\sqrt[54]{454}.A.B.C\)\(\sqrt{AB^4+BC^4+CA^4}\)\(\Rightarrow AB=CA=BC^4\)nên ta sẽ lại là 54abc3
vậy suy ra \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\) ta =\(\notin54\) chả việc gì dài dòng cả
Cho a; b; c > 0 sao cho a+b+c=3. Chứng minh rằng
\(\frac{a}{b^2\left(ca+1\right)}+\frac{b}{c^2\left(ab+1\right)}+\frac{c}{a^2\left(bc+1\right)}\ge\frac{9}{\left(1+abc\right)\left(ab+bc+ca\right)}\)
Chứng minh đẳng thức:
\(\left(x+a\right)\left(x+b\right)\left(x+c\right)=x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc\)
Giúp bài này nha