1) Tìm xy thuộc N biết (2x+1)(y-5)=10
2) Chứng minh rằng tổng 3 số tự nhiên liên tiếp thì chia cho 3
1) Tìm xy thuộc N biết (2x+1)(y-5)=10
2) Chứng minh rằng tổng 3 số tự nhiên liên tiếp thì chia cho 3
1/ Ta có :
\(\left(2x+1\right)\left(y-5\right)=10\)
Vì \(x,y\in N\Leftrightarrow2x+1\in N,y-5\in N;2x+1,y-5\inƯ\left(10\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x+1=10\\y-5=1\end{matrix}\right.\\\left\{{}\begin{matrix}2x+1=1\\y-5=10\end{matrix}\right.\\\left\{{}\begin{matrix}2x+1=5\\y-5=2\end{matrix}\right.\\\left\{{}\begin{matrix}2x+1=2\\y-5=5\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\dfrac{9}{2}\left(loại\right)\\y=6\end{matrix}\right.\\\left\{{}\begin{matrix}x=0\\y=15\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=7\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{1}{2}\left(loại\right)\\y=10\end{matrix}\right.\end{matrix}\right.\)
Vậy ........
2/ Gọi 3 số tự nhiên liên tiếp là \(a;a+1;a+2\left(a\in N\right)\)
\(\Leftrightarrow a+a+1+a+2\)
\(=3a+3⋮3\rightarrowđpcm\)
chứng minh rằng tổng của 3 số tự nhiên liên tiếp thì chia hết cho 3, tổng của 5 số tự nhiên liên tiếp thì chia hết cho 5
a) Gọi 3 số đó lần lượt là:a; a+1 ; a+2
Ta có: a + a+1 + a+2= 3a+3
3 chia hết cho 3 =>> 3a chia hết cho 3
=>> 3a+3 chia hết cho 3
=>> Tổng của 3 số tự nhiên liền tiếp luôn chia hết cho 3
Câu còn lại tương tự nha!
a) Goi 3 so tu nhien lien tiep la a;a+1;a+2
co : a+(a+1)+(a+2)=a+a+1+a+2=(a+a+a)+1+2=3a+3 ma 3a chia het cho 3 ; 3 chia het cho 3 nen suy ra Tong 3 so tu nhien lien tiep a;a+1;a+2 chia het cho 3
b) Tuong tu ta cung co 5 so : a;a+1;a+2;a+3;a+4
co : a+(a+1)+(a+2)+(a+3)+(a+4)=(a+a+a+a+a)+1+2+3+4=5a+10 ma 5a chia het cho 5;10 chia het cho 5 nen suy ra tong 5 so tu nhien lien tiep a;a+1;a+2;a+3;a+4 chia het cho 5
Gọi 3 số tự nhiên liên tiếp là a;a+1;a+2
Ta có a+(a+1)+(a+2)=a+a+1+a+2=3a+3=3(a+1)
Vì 3 chia hết cho 3 nên a+(a+1)+(a+2 )chia hết cho 3
Gọi 5 số tự nhiên liên tiếp là a;a+1;a+2;a+3;a+4
ta có a+(a+1)+(a+2)+(a+3)+(a+4)=a+a+1+a+2+a+3+a+4=5a+10=5(a+2)
Vì 5 chia hết cho 5 nên a+(a+1)+(a+2)+(a+3)+(a+4) chia hết cho 5
Bài 1 : Tìm số nguyên n biết ,
a) 3n + 1 chia hết cho n - 1
b) n^2 + 5 chia hết cho n + 1
Bài 2 : Chứng tỏ rằng
a) Tổng 3 số tự nhiên liên tiếp chia hết cho 3
b) Tỏng 5 số tự nhiên liên tiếp chia hết cho 5
Bài 3. Tìm các chữ số sao cho số 7a4b chia hết cho 4 và chia hết cho 7
Bài 2. Tìm số tự nhiên n để 3n +
Bài 4. Chứng tỏ rằng trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
Bài 5. Chứng tỏ rằng tổng của 4 số tự nhiên liên tiếp không chia hết cho 4
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
TH1: Nếu a chia hết cho 3 => Đề bài đúng
TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)
=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng
TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)
=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng
TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)
Bài 5:
Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3
Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2
Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4
Nhưng: 2 không chia hết cho 4
Nên: 4(b+1)+2 không chia hết cho 4
Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)
Bài 3:
\(\overline{7a4b}\) ⋮ 4 ⇒ \(\overline{4b}\)⋮ 4 ⇒ b = 0; 4; 8
Nếu b = 0 ta có: \(\overline{7a40}\)⋮ 7
⇒ 7040 + a \(\times\) 100 ⋮ 7
1005\(\times\) 7+ 5 + 14a + 2a ⋮ 7
5 + 2a ⋮ 7 ⇒ 2a = 2; 9; 16⇒ a = 1; \(\dfrac{9}{3}\);8 (1)
Nếu b = 8 ta có: \(\overline{7a4b}\) = \(\overline{7a48}\)⋮ 7
⇒ 7048 + a\(\times\) 100 ⋮ 7
1006\(\times\) 7 + 6 + 14a + 2a ⋮ 7
6 + 2a ⋮ 7 ⇒ 2a = 1; 8; 15 ⇒ a = \(\dfrac{1}{2}\); 4; \(\dfrac{15}{2}\) (2)
Nếu b = 4 ta có: \(\overline{7a4b}\) = \(\overline{7a44}\) ⋮ 7
⇒ 7044 + 100a ⋮ 7
1006.7 + 2 + 14a + 2a ⋮ 7
2 + 2a ⋮ 7 ⇒ 2a = 5; 12;19 ⇒ a = \(\dfrac{5}{2}\); 6; \(\dfrac{9}{2}\) (3)
Kết hợp (1); (2); (3) ta có:
(a;b) = (1;0); (8;0); (4;8); (6;4)
a)Chứng minh rằng tổng của 3 số tự nhiên liên tiếp thì chia hết cho 3.
b)Chứng minh rằng tổng của 4 số tự nhiên liên tiếp thì chia hết cho 4.
a)gọi 3 số tự nhiên liên tiếp đó là :
k;k+1;k+2
tổng 3 số tự nhiên liên tiếp đó là: k+k+1+k+2
ta có
k+k+1+k+2
\(\Leftrightarrow\)k+(k+1)+(k+2)
\(\Leftrightarrow\)k.3+(1+2)
\(\Leftrightarrow\)k.3+3
vì k.3 chia hết cho 3 và 3 chia hết cho 3 nên k.3+3
\(\Rightarrow\)k+k+1+k+2 chia hết cho 3
Vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
b) gọi 4 số tự nhiên liên tiếp đó 4 là:
4;4+1;4+2;4+3
tổng của 4 số tự nhiên liên tiếp 4 là
k+k+1+k+2+k+3
ta có
k+k+1+k+2+k+3
\(\Leftrightarrow\)k+(k+1)+(k+2)+(k+3)
\(\Leftrightarrow\)k.4+(1+2+3)
\(\Leftrightarrow\)k.4+6
vì k.4 chia hết cho 4 nhưng 6 không chia hết cho 4 nên k.4+6 không chia hết cho 4
\(\Rightarrow\) k+k+1+k+2+k+3 không chia hết cho 4
vậy tổng 4 số tự nhiên ko chia hết cho 4
OH SORY BẠN VÌ CÂU b) MÌNH CHỈ LÀM ĐƯỢC CHỨNG MINH RẰNG TỔNG 4 SỐ TỰ NHIÊN LIÊN TIẾP KHÔNG CHIA HẾT CHO 4 THÔI
VÀ MK NGHĨ CÂU B ĐỀ SAi
1) chứng minh rằng
tổng T= 3+32+33+........+39 chia het cho 13
2)chứng minh rằng
trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3
3)tìm cặp số tự nhiên (xy) thỏa mãn 3x+6y=2015
1)
T= 3+32+33+...+39
Ta thấy T có 9 số hạng và 9 chia hết cho 3
=(3+32+33)+...+(37+38+39)
=3(1+3+32)+..+37(1+3+32)
=3.13+...+37.13=13(3+..+37) chia hết cho 13
1.Tìm x,y để :
a)x378y chia hết cho 8 và 9
b)3x23y chia hết cho 5 và 11
c)3x4y5 chia hết cho 9 và x-y=2
2.Cho n€N, chứng minh rằng
a) (n+2016)*(n+2019) chia hết cho 2
b) (n+2015)*(n+2016)*(n+2017) chia hết cho 3
c) n*(n+1)*(2n+1) chia hết cho 3
3.Chứng minh rằng:
-Tổng 5 số tự nhiên liên tiếp chia hết cho 5
-Tổng 6 số tự nhiên liên tiếp không chia hết cho 6
4.Tìm số tự nhiên lớn nhất có 3 chữ số chia 4 và chia 25 dư 8
5.Tìm a biết:
a)32a1 chia hết cho 7
b) 1a25 chia hết cho 13
c)a38 chia hết cho 6
1.a)x378y chia hết cho 8 =>78y chia hết cho 8 (vì số có 3 chữ số cuối chia hết cho 8 thì số đó chia hết cho 8)
=>y=4
=>x3784 chia hết cho 9 => (x+3+7+8+4) chia hết cho 9
=> (x+22) chia hết cho 9
=>x=5
vậy số cần tìm là 53784
1.b)3x23y chia hết cho 5 => y chia hết cho 5
=>y= 0 hoặc 5
TH1.1: nếu y=0,x là chẵn
=>3x230 chia hết cho 11=>(3+2+0)-(x+3) hoặc (x+3)-(3+2+0) chia hết cho 11 (vì tổng các chữ số hàng chẵn - tổng các chữ số hàng lẻ chia hết cho 11 thì số đó chia hết cho 11 hoặc ngược lại)
=>5-(x+3) hoặc (x+3)-5 chia hết cho 11
ta xét điều kiện (x+3)-5 chia hết cho 11 vì 5-(x+3)>11
nếu (x+3)-5=0 thì x=2(chọn)
nếu (x+3)-5=11 thì x=13(loại)
nếu (x+3)-5>11 mà chia hết cho 11 thì x >2 (> số có 1 chữ số)
vậy số cần tìm là 32230
K CHO MÌNH NHÉ !!!!!!
xim lỗi ở chỗ ta xét điều kiện thì bạn thay chỗ 5-(x+3)>11 thì bạn sửa dấu > thành < nhé !!!!
làm tiếp ý b bạn nhé
thử TH2 với y=5 tương tự vậy thì mình sẽ ra kết quả là 37235
1/Chứng minh rằng : tích 5 số tự nhiên liên tiếp luôn luôn chia hết cho 30.
2/Tìm số bị chia & số chia, biết rằng khi + số bị chia với 10 và nhân số chia với 10 thì thương không thay đổi.
3/Cho 10 số tự nhiên bất kỳ: a1, a2,....a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10
Chứng minh rằng tổng của 3 số tự nhiên liên tiếp chia hết cho 3 tổng của 5 số tự nhiên không chia hết cho 5
Bài 2:Chứng minh rằng:
a,Tổng của ba số chẵn liên tiếp thì chia hết cho 6
b,Tổng ba số lẻ liện tiếp không chia hết cho 6
c,nếu a chia hết cho b và b chia hết cho c thì a chia hết cho c
d, P=a+a^2+a^3+...+a^2n chia hết cho a+1;a,n thuộc N
e, Nếu a và b chia cho 7 có cùng số dư thì hiệu a-b chia hết cho 7
giúp em mới cầu xin đó