nêu 7 hằng đẳng thức
nêu 7 hằng đẳng thức cấm quên
(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
a2-b2=(a+b)(a-b)
(a+b)3=a3+3a2b+3ab2+b3
(a-b)3=a3-3a2b+3ab2-b3
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b)(a2+ab+b2)
7. Bình phương của một tổng:
\(\left(a+b\right)^2=a^2+2ab+b^2\)
Bình phương của một hiệu:\(\left(a-b\right)^2=a^2-2ab+b^2\)
2 .Hiệu hai bình phương:
\(a^2-b^2=\left(a+b\right)\left(a-b\right)\)
3. Lập phương của một tổng:
\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)
4.Lập phương của một hiệu:
\(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)
5. Tổng hai lập phương:
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
6 . Hiệu hai lập phương:
\(a^3+b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
Hãy nêu 7 hằng đẳng thức đáng nhớ ?
Các hàng đẳng thức lớp 7 đc học là ;
\(\left(a+b\right)^2=a^2+2ab+b^2\)
\(\left(a-b\right)^2=a^2-2ab+b^2\)
\(a^2-b^2=\left(a+b\right).\left(a-b\right)\)
Vì câu hỏi ghi toán 7 nên chỉ có thế thôi chưa học đâu
7 hằng đẳng thức đáng nhớ là :
\(\left(a+b\right)^2=a^2+2ab+b^2\)
\(\left(a-b\right)^2=a^2-2ab+b^2\)
\(a^2-b^2=\left(a+b\right)\left(a-b\right)\)
\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)
\(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)
\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
~ Hok tốt ~
1.Bình phương của 1 tổng bằng bình phương số thứ 1 cộng hai lần tích của số thứ nhất với số thứ hai cộng bình phương số thứ hai
2.Bình phương của 1 hiệu bằng bình phương số thứ 1 trừ 2 lần tích số thứ nhất với số thứ 2 cộng với bình phương số thứ 2.
3.Hiệu 2 bình phương bằng tích của tổng 2 số với hiệu 2 số.
4.Lập phương của 1 tổng bằng lập phương số thứ 1 + 3 lần tích bình phương số thứ 1 với số thứ 2 + 3 lần tích số thứ 1 với bình phương số thứ 2 + lập phương số thứ 2.
5. Lập phương của 1 tổng bằng lập phương số thứ 1 -3 lần tích bình phương số thứ 1 với số thứ 2 + 3 lần tích số thứ 1 với bình phương số thứ 2 - lập phương số thứ 2.
6.Tổng hai lập phương bằng tích giữa tổng 2 số với bình phương thiếu của 1 hiệu.
7.Hiệu 2 lập phương bằng tích giữa hiệu hai số với bình phương thiếu của 1 tổng.
Nêu 7 hằng đẳng thức đáng nhớ !!!!
MẮT TINH HƠN THÔNG MINH !!!!!
1. (a + b)2 = a + 2ab + b2
2. (a - b)2 = a2 - 2ab +b2
3. a2 + b2 = (a + b) - 2ab = (a - b) + 2ab
4. a - b = (a + b)(a - b)
chi nho 4 cai do thui bn co gi hoi mk co hinh anh ban hay dua mail cho mk nhe mk cho bn 13 hang dang thuc luon
xl em ko biết
because em ms lớp 1
cho mk 7 hằng đẳng thức đáng nhớ và 7 hằng đẳng thức mở rộng đi
ai dúng mk tick
7 hằng đẳng thức cơ bản:
1, (a + b)2 = a2 + 2ab + b2
2, (a _ b)2 = a2 _ 2ab + b2
3, a2 - b2 = ( a - b ). (a + b )
4. (A+B)3= A3+3A2B +3AB2+B3
5. (A – B)3 = A3- 3A2B+ 3AB2- B3
6. A3 + B3= (A+B)(A2- AB +B2)
7. A3- B3= (A- B)(A2+ AB+ B2)
Mở rộng :
8. (A+B+C)2= A2+ B2+C2+2 AB+ 2AC+ 2BC
9. (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac
10. (a−b−c)2=a2+b2+c2−2ab−2ac+2bc(a−b−c)2=a2+b2+c2−2ab−2ac+2bc
11. a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)
12. a3−b3=(a−b)3+3ab(a−b)a3−b3=(a−b)3+3ab(a−b)
13. (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
14. a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)
15. (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)
16. (a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2(a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2
17. (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc
19. ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33
20.ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3
cho mk 7 hằng đẳng thức đáng nhớ và hằng đẳng thức mở đii
tôi nói có 7 hằng đẳng thức bạn tôi nói có 8 hằng đẳng thức.Cho tôi cách tính ra hằng đẳng thưc số 8
Nêu các hằng đẳng thức đáng nhớ đã học.
1) (a+b)^2=a^2+2ab+b^2
2) (a-b)^2=a^2-2ab+b^2
3) a^2-b^2=(a-b)(a+b)
4) (a+b)^3=a^3+3a^2b+3ab^2+b^3
5) (a-b)^3=a^3-3a^2b+3ab^2-b^3
6) a^3+b^3=(a+b)(a^2-ab+b^2)
7) a^3-b^3=(a-b)(a^2+ab+b^2)
và còn nhiều hằng đẳng thức bổ sung khác nhưng mình chỉ nêu những cái cơ bản ra thôi
7 hằng đẳng thức đáng nhớ và các hằng đẳng thức mở rộng <3 !
Ngoài những hằng đẳng thức cơ bản trong sgk, còn có những hằng đẳng thức hay được sử dụng trong các bài toán như sau:
(1) (a+b+c)2=a2+b2+c2+2ab+2bc+2ac(a+b+c)2=a2+b2+c2+2ab+2bc+2ac
(2) (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac
(3) (a−b−c)2=a2+b2+c2−2ab−2ac+2bc(a−b−c)2=a2+b2+c2−2ab−2ac+2bc
(4) a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)
(5) a3−b3=(a−b)3+3ab(a−b)a3−b3=(a−b)3+3ab(a−b)
(6) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
(7) a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)
(8) (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)
(9) (a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2(a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2
(10) (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc
(11) ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33
(12)ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3
(13) an−bn=(a−b)(an−1+an−2b+an−3b2+...+a2bn−3+abn−2+bn−1)an−bn=(a−b)(an−1+an−2b+an−3b2+...+a2bn−3+abn−2+bn−1)
(14) Với n lẻ:
an+bn=(a+b)(an−1−an−2b+an−3b2−...+a2bn−3−abn−2+bn−1)an+bn=(a+b)(an−1−an−2b+an−3b2−...+a2bn−3−abn−2+bn−1)
(15) Nhị thức Newton:
(a+b)n=an+n!(n−1)!1!an−1b+n!(n−2)!2!an−2b2+...+n!(n−k)!k!an−kbk+...+n!2!(n−2)!a2bn−2+n)!1!(n−1)!abn−1+bn
Các hằng đẳng thức mở rộng thì nhiều nhưng quan trọng phải nhớ tốt mà biết vận dụng linh hoạt.
(a + b + c)² = a² + b² + c² + 2ab + 2ac + 2bc
(a + b - c)² = a² + b² + c² + 2ab - 2ac - 2bc
(a + b + c + d)² = a² + b² + c² + d² + 2ab + 2ac + 2ad + 2bc + 2bd + 2cd
(a + b + c)³ = a³ + b³ + c³ + 3(a + b)(a + c)(b + c)
a³ + b³ = (a + b)³ - 3ab(a + b)
a³ - b³ = (a - b)³ + 3ab(a - b)
a^n + b^n = (a + b)( a^(n - 1) - a^(n - 2)b + ... + b^(n - 1) )
a^n - b^n = (a - b)( a^(n - 1) + a^(n - 2)b + ....+b^(n - 1) )
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - ac - bc)
Các hằng đẳng thức mở rộng thì nhiều nhưng quan trọng phải nhớ tốt mà biết vận dụng linh hoạt.
(a + b + c)² = a² + b² + c² + 2ab + 2ac + 2bc
(a + b - c)² = a² + b² + c² + 2ab - 2ac - 2bc
(a + b + c + d)² = a² + b² + c² + d² + 2ab + 2ac + 2ad + 2bc + 2bd + 2cd
(a + b + c)³ = a³ + b³ + c³ + 3(a + b)(a + c)(b + c)
a³ + b³ = (a + b)³ - 3ab(a + b)
a³ - b³ = (a - b)³ + 3ab(a - b)
a^n + b^n = (a + b)( a^(n - 1) - a^(n - 2)b + ... + b^(n - 1) )
a^n - b^n = (a - b)( a^(n - 1) + a^(n - 2)b + ....+b^(n - 1) )
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - ac - bc)