Ngoài những hằng đẳng thức cơ bản trong sgk, còn có những hằng đẳng thức hay được sử dụng trong các bài toán như sau:
(1) (a+b+c)2=a2+b2+c2+2ab+2bc+2ac(a+b+c)2=a2+b2+c2+2ab+2bc+2ac
(2) (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac
(3) (a−b−c)2=a2+b2+c2−2ab−2ac+2bc(a−b−c)2=a2+b2+c2−2ab−2ac+2bc
(4) a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)
(5) a3−b3=(a−b)3+3ab(a−b)a3−b3=(a−b)3+3ab(a−b)
(6) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
(7) a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)
(8) (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)
(9) (a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2(a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2
(10) (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc
(11) ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33
(12)ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3
(13) an−bn=(a−b)(an−1+an−2b+an−3b2+...+a2bn−3+abn−2+bn−1)an−bn=(a−b)(an−1+an−2b+an−3b2+...+a2bn−3+abn−2+bn−1)
(14) Với n lẻ:
an+bn=(a+b)(an−1−an−2b+an−3b2−...+a2bn−3−abn−2+bn−1)an+bn=(a+b)(an−1−an−2b+an−3b2−...+a2bn−3−abn−2+bn−1)
(15) Nhị thức Newton:
(a+b)n=an+n!(n−1)!1!an−1b+n!(n−2)!2!an−2b2+...+n!(n−k)!k!an−kbk+...+n!2!(n−2)!a2bn−2+n)!1!(n−1)!abn−1+bn
Các hằng đẳng thức mở rộng thì nhiều nhưng quan trọng phải nhớ tốt mà biết vận dụng linh hoạt.
(a + b + c)² = a² + b² + c² + 2ab + 2ac + 2bc
(a + b - c)² = a² + b² + c² + 2ab - 2ac - 2bc
(a + b + c + d)² = a² + b² + c² + d² + 2ab + 2ac + 2ad + 2bc + 2bd + 2cd
(a + b + c)³ = a³ + b³ + c³ + 3(a + b)(a + c)(b + c)
a³ + b³ = (a + b)³ - 3ab(a + b)
a³ - b³ = (a - b)³ + 3ab(a - b)
a^n + b^n = (a + b)( a^(n - 1) - a^(n - 2)b + ... + b^(n - 1) )
a^n - b^n = (a - b)( a^(n - 1) + a^(n - 2)b + ....+b^(n - 1) )
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - ac - bc)
Các hằng đẳng thức mở rộng thì nhiều nhưng quan trọng phải nhớ tốt mà biết vận dụng linh hoạt.
(a + b + c)² = a² + b² + c² + 2ab + 2ac + 2bc
(a + b - c)² = a² + b² + c² + 2ab - 2ac - 2bc
(a + b + c + d)² = a² + b² + c² + d² + 2ab + 2ac + 2ad + 2bc + 2bd + 2cd
(a + b + c)³ = a³ + b³ + c³ + 3(a + b)(a + c)(b + c)
a³ + b³ = (a + b)³ - 3ab(a + b)
a³ - b³ = (a - b)³ + 3ab(a - b)
a^n + b^n = (a + b)( a^(n - 1) - a^(n - 2)b + ... + b^(n - 1) )
a^n - b^n = (a - b)( a^(n - 1) + a^(n - 2)b + ....+b^(n - 1) )
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - ac - bc)