CÁC BẠN HỘ MÌNH VỚI
cmr nêu ạ,b,c thỏa mãn : 1/a+1/b+1/c=1/a+b+c thì 2 trong 3 số fải đối nhau
CHỨNG MINH RẰNG NẾU a,b,c LÀ 3 SỐ THỎA MÃN HỆ THỨC 1/a +1/b +1/c =1/a+b+c THÌ HAI TRONG 3 SỐ ĐÓ PHẢI LÀ 2 SỐ ĐỐI NHAU.
Câu hỏi của Nguyễn Đa Vít - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo thêm!
Chứng minh rằng: Nếu 3 số thực a, b, c thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\) thì trong 3 số đó luôn tồn tại 2 số đối nhau
`1/a+1/b+1/c=1/(a+b+c)`
`<=>(a+b)/(ab)+(a+b)/(c(a+b+c))=0`
`<=>(a+b)(ab+ac+bc+c^2)=0`
`<=>(a+b)(a+c)(b+c)=0`
`=>` $\left[ \begin{array}{l}a=-b\\b=-c\\c=-a\end{array} \right.$
`=>` PT luôn tồn tại 2 số đối nhau
1) Cho 3 số a,b,c thỏa mãn 0 < a <= b <= c. Chứng minh rằng:
a/b + b/c + c/a >= b/a + c/a + a/c
2) Giải phương trình:
( 2017 - x)^3 + ( 2019 - x)^3 + (2x - 4036)^3 = 0
3)
a) Rút gọn biểu thức : A = 1/1-x + 1/1+x + 2/1+x^2 + 4/1+x^4 + 8/1+x+8
b) Tìm x,y biết : x^2 + y^2 + 1/x^2 + 1/y^2 = 4
Chứng minh rằng nếu a,b,c là 3 số thỏa mãn hệ thức :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\) thì 2 trong 3 số đó phải là 2 số đối nhau
Ta có:
1/a + 1/b + 1/c=1 / (a + b + c)
Vậy nên 1/a + 1/b + 1/c - 1/ (a + b + c) = 0
=> (a + b) / ab + (a + b) / c (a + b + c)=0 (cộng 2 số đầu với nhau và 2 số còn lại với nhau)
=> (a + b) ( 1 / ab - 1 / c (a + b + c)) = 0.
=> (a + b) (c (a + b + c)) + ab ) / ( -ab (a + b +c)) =0
=> (a + b) (ac +bc +c^2 + ab) / ( - ab (a + b + c)) =0=0
=> (a + b) ( c (b + c) + a (c +b)) / ( - ab (a + b + c)) =0
=> (a + b) (b +c) ( c + a) / ( - ab (a + b + c)) =0
=> a + b =0 hay b + c =0 hay c + a =0, vậy 2 trong 3 số a, b, c có 2 số đối nhau ( vì 2 số đối nhau cộng lại mới bằng 0)
Theo bài ra ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Rightarrow\frac{bc+ca+ab}{abc}=\frac{1}{a+b+c}\)
\(\Rightarrow\left(bc+ca+ab\right)\left(a+b+c\right)=abc\)
\(\Rightarrow\left(bc+ca+ab\right)\left(a+b+c\right)-abc=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow a+b=0\)( vì \(a=-b\))
\(b+c=0\)(vì \(b=-c\))
\(c+a=0\)( vì c=-a )
Chứng minh rằng : nếu a,c,b là 3 số thỏa mãn hệ thức
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\) thì 2 trong 3 số đó phải là đối nhau
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{c-a-b-c}{c\left(a+b+c\right)}\Leftrightarrow\frac{a+b}{ab}=\frac{-\left(a+b\right)}{ac+bc+c^2}\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2\right)=-\left(a+b\right)ab\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2\right)+\left(a+b\right)ab=0\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
<=> a + b = 0 hoặc b + c = 0 hoặc c + a = 0
<=> a = -b hoặc b = -c hoặc c = -a
Vậy...
Ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Rightarrow\frac{bc+ca+ab}{abc}=\frac{1}{a+b+c}\)
\(\Rightarrow\left(bc+ca+ab\right)\left(a+b+c\right)=abc\)
\(\Rightarrow\left(bc+ac+ab\right)\left(a+b+c\right)-abc=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow\hept{\begin{cases}a+b=0\\b+c=0\\c+a=0\end{cases}}\)
Cho a,b,c thỏa mãn : 1/a + 1/4 + 1/c = 1/ (a + b + c ) a,Chứng minh : trong ba số a,b,c phải có 2 số đối nhau.
b,chứng minh : nếu a,b,c thỏa mãn điều kiện phần a thì với n là số tự nhiên và là số lẻ thì 1/(a^n) + 1/(b^n) + 1/(c^n) = 1/(a^n + b^n + c^n)
Làm nhanh mình tick cho
Nhờ các bạn giải hộ mình bài toán này nhé
Cho a,b,c là các số không âm thỏa mãn a+b+c=3
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức P=\(\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\)
\(a-\frac{ab^2}{b^2+1}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Tương tự và cộng lại, ta có:\(p\ge a+b+c-\frac{ab+bc+ca}{2}\) mà 3(ab+bc+ca)\(\le\)(a+b+c)^2=9
=>ab+bc+ca\(\le\)3
=> \(p\ge3-\frac{3}{2}=\frac{3}{2}\)
Dấu = xảy ra =>a=b=c=1
Vậy còn cách tìm maxP thì sao hả mấy bạn
Giải hộ mình mấy bài này với:
1)cho số thực dương a,b,c thỏa mãn a+b+c=1. Chứng minh rằng :
\(\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\le\frac{3}{2}\)
2)Cho 3 số x,y,z khác không thỏa mãn:\(\hept{\begin{cases}x+y+z=2010\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2010\end{cases}}\)
Chứng minh rằng trong 3 số x,y,z luôn tồn tại 2 số đối nhau.
1,cho 3 số a,b,c đôi 1 khác nhau thỏa mãn a/(b − c) +b/( c − a) + c/(a − b) = 0 cmr: trong 3 số phải có 1 số âm và 1 số dương
2, Cho x.y.z = 1, x + y + z = 1/x + 1/y + 1/z. Tính D = ( x^19 - 1 ) ( y^5 - 1 ) ( z^1890 - 1 )
Giúp mình với nha các bạn