Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn công huy
Xem chi tiết
TRAN XUAN TUNG
Xem chi tiết
zZz Cool Kid_new zZz
29 tháng 12 2019 lúc 16:54

Bạn tham khảo tại đây:

Câu hỏi của Phạm Tuấn Kiệt - Toán lớp 9 - Học toán với OnlineMath

Khách vãng lai đã xóa
Hoàng Hải Nam
3 tháng 4 2020 lúc 21:21

i don know

Khách vãng lai đã xóa
Nguyễn Hữu Đức
3 tháng 4 2020 lúc 21:24

sao minkf ko thi đấu đc ạ

Khách vãng lai đã xóa
Tùng Nguyễn
Xem chi tiết
Phạm Tuấn Kiệt
Xem chi tiết
Pain Thiên Đạo
13 tháng 2 2018 lúc 17:53

Conan: bác mori ơi cháu biết hung thủ là ai rồi

Mouri : cái j , trẻ con đi chỗ khác chơi

Conan : hừ , lại phải dùng thuốc gây mê rồi ,  pặc

Mouri : á á :) , lại thế nữa rồi , á á 

Conan : thanh tra megure ơi bác mouri nói đã tìm ra hung thủ rồi

megure : Thật không Mori , anh đã tìm ra hung thủ rồi à 

Mouri : chính xác hung thủ chính là hắn :) 

dự đoán của Mouri a=b=c=2

áp dụng BDT cô si ta có

\(VT\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{\sqrt{b^3+1}+\sqrt{c^3+1}+\sqrt{a^3+1}}.\)

áp dụng BDT cô si dạng shinra " mẫu số" ta có   với Q= mẫu số

\(\sqrt{\left(b^3+1\right).9}\le\frac{b^3+1+9}{2}\)

\(\sqrt{\left(c^3+1\right).9}\le\frac{c^3+1+9}{2}\)

\(\sqrt{a^3+1.9}\le\frac{a^3+1+9}{2}\)

\(3Q\le\frac{1}{2}\left(a^3+b^3+c^3\right)+15.\)

\(a^3+8+8\ge3\sqrt[3]{a^32^32^3}=12a\)

\(b^3+8+8\ge12b\)

\(c^3+8+8\ge12c\)

\(a^3+b^3+c^3\ge72-48=24\)

\(3Q\le\frac{24}{2}+15=27\Leftrightarrow Q=9\)

thay vào VT ta được

\(VT\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{9}\)

\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=\left(a+b+c\right)+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

\(VT\ge\frac{6+2\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)}{9}\)

\(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\ge3\sqrt[3]{\sqrt{a^2b^2c^2}}=3\sqrt[3]{abc}\)

\(a+b+c\ge3\sqrt[3]{abc}\)

suy ra đươc  \(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}=a+b+c=6\)

\(VT\ge\frac{6+2\left(6\right)}{9}=2\)

dấu = xảy ra khi a=b=c=2

Pain Thiên Đạo
13 tháng 2 2018 lúc 17:55

p/s đúng nhé

Phạm Tuấn Kiệt
Xem chi tiết
Thắng Nguyễn
4 tháng 1 2018 lúc 17:29

Áp dụng BĐT AM-GM và Cauchy-Schwarz ta có:

\(VT=Σ_{cyc}\frac{a}{\sqrt{\left(b+1\right)\left(b^2-b+1\right)}}\geΣ_{cyc}\frac{a}{\sqrt{\frac{\left(b+1+b^2-b+1\right)^2}{4}}}\)

\(=Σ_{cyc}\frac{2a}{b^2+2}\)\(=Σ_{cyc}\frac{2a^2}{ab^2+2a}\ge\frac{2\left(a+b+c\right)^2}{Σ_{cyc}ab^2+2\left(a+b+c\right)}\)

Cần c.minh \(\frac{2\left(a+b+c\right)^2}{Σ_{cyc}ab^2+2\left(a+b+c\right)}\ge2\)\(\Leftrightarrow\frac{36}{Σ_{cyc}ab^2+12}\ge1\)

Hay \(ab^2+bc^2+ca^2\le24\)\(\Leftrightarrow\)\(\left(a+b+c\right)^3\ge9\left(ab^2+bc^2+ca^2\right)\left(☺\right)\)

\(VT_{\left(☺\right)}\ge3\left(a+b+c\right)\left(ab+bc+ac\right)\ge9\left(ab^2+bc^2+ca^2\right)\) (vì \(\left(Σa\right)^2\ge3\left(Σab\right)\))

\(\Leftrightarrow\left(a+b+c\right)\left(ab+ac+bc\right)\ge3\left(ab^2+bc^2+ca^2\right)\)

Tự c.m nốt gợi ý: \(a^2b+b^2c+c^2a-\)\(\left(ab^2+bc^2+ca^2\right)\)\(=\frac{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}{3}\)

Và \(3abc-\left(ab^2+bc^2+ca^2\right)=ab\left(c-b\right)+bc\left(a-c\right)+ac\left(b-a\right)\)

Xem chi tiết
Vũ Thu Mai
Xem chi tiết
Kiệt Nguyễn
31 tháng 5 2020 lúc 19:54

Áp dụng BĐT Cauchy cho các cặp số dương, ta có: \(VT=\Sigma\frac{a}{\sqrt{b^3+1}}=\Sigma\frac{a}{\sqrt{\left(b+1\right)\left(b^2-b+1\right)}}\)

\(\ge\Sigma\frac{a}{\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}}=\Sigma\frac{2a}{b^2+2}=\Sigma\left(a-\frac{ab^2}{b^2+2}\right)\)

\(=\Sigma\left(a-\frac{2ab^2}{b^2+b^2+4}\right)\ge\Sigma\left(a-\frac{2ab^2}{3\sqrt[3]{4b^4}}\right)\)\(=\Sigma\left[a-\frac{a\sqrt[3]{2b^2}}{3}\right]=\Sigma\left[a-\frac{a\sqrt[3]{2.b.b}}{3}\right]\)

\(\ge\Sigma\left[a-\frac{a\left(2+b+b\right)}{9}\right]\)\(=\left(a+b+c\right)-\frac{2\left(a+b+c\right)}{9}-\frac{2\left(ab+bc+ca\right)}{9}\)

\(=\frac{7\left(a+b+c\right)}{9}-\frac{2\left(ab+bc+ca\right)}{9}\)\(\ge\frac{7\left(a+b+c\right)}{9}-\frac{2.\frac{\left(a+b+c\right)^2}{3}}{9}=2\)

Đẳng thức xảy ra khi a = b = c = 2

Khách vãng lai đã xóa
Đinh Thị Ngọc Anh
Xem chi tiết
Kudo Shinichi
Xem chi tiết
Kudo Shinichi
6 tháng 7 2016 lúc 21:00

Trả lời hộ mình đi