tìm giá trị nhỏ nhất của :
D = l x - 2 l + l x - 3 l + l x - 4 l
a/ Tìm x để biểu thức A = l x-2/3 l -4 đạt giá trị nhỏ nhất
b/ Tìm giá trị lớn nhất của biểu thức: B = 2- l x+5/6 l
c/ Tìm x để biểu thức C = l x l + l x+2 l đạt giá trị nhỏ nhất
giải ra cách làm luôn nhé
ai giải ra cách làm thì mình tick
T/C của gttđ là >= 0 nên
a) GTNN = -4
b) GTLN = 2
c) GTNN = 2
1. Với giá trị nào của x thì A = l x - 3 l + l x - 5 l + l x - 7 l đạt giá trị nhỏ nhất
2. Với giá trị nào của x thì B = l x - 1 l + l x - 2 l + l x - 3 l + l x - 5 l đạt giá trị nhỏ nhất
Tìm giá trị nhỏ nhất của biểu thức D= l x2 +x+3 l + l x2 +x - 6 l
Có D = |x^2 +x+3 | + |x^2 +x-6| = |x^2 +x+3 | + |-x^2 - x + 6 |
Ta co: D = |x^2 +x+3| +|-x^2 -x + 6 | \(\ge\)| x^2 + x + 3 - x^2 - x + 6 |
D \(\ge\)|9 | = 9
D nhỏ nhất chỉ khi D=9
Vậy 9 là giá trị nhỏ nhất của biểu thức D = | x^2 +x+3| + | x^2 + x - 6 |
\(\left|x^2+x+3\right|+\left|x^2+x-6\right|\)
\(=\left|x^2+x+3-x^2-x+6\right|\)
\(\ge9\)
tìm giá trị nhỏ nhất, lớn nhất
a) A= I x-1 l - 2
b) B= 3 - l x+2/5 l
c) C= 0.5 + l -5/4 l - l x-2 l
d) D= 24-4 . l 1-24x l
a) \(A=\left|x-1\right|-2\)
vì \(\left|x-1\right|\ge0\)nên
\(\Rightarrow\left|x-1\right|-2\ge-2\)
vậy GTNN của A=-1 khi x=1
Tìm Giá trị nhỏ nhất của A = l x-3/4 l
Tìm Giá trị lớn nhất của B = -l x+2020 l
Mình đang cần gấp giúp mình với :(
Bài làm:
a) Ta có: \(A=\left|x-\frac{3}{4}\right|\ge0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|x-\frac{3}{4}\right|=0\Rightarrow x=\frac{3}{4}\)
Vậy Min(A) = 0 khi x=3/4
b) Ta có: \(B=-\left|x+2020\right|\le0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|x+2020\right|=0\Rightarrow x=-2020\)
Vậy Max(B) = 0 khi x = -2020
A = | x - 3/4 |
\(\left|x-\frac{3}{4}\right|\ge0\forall x\Rightarrow A\ge0\)
Dấu " = " xảy ra <=> x - 3/4 = 0 => x = 3/4
Vậy AMin = 0 , đạt được khi x = 3/4
B = - | x + 2020 |
\(\left|x+2020\right|\ge0\forall x\Rightarrow-\left|x+2020\right|\le0\forall x\)
\(\Rightarrow B\le0\)
Dấu " = " xảy ra <=> x + 2020 = 0 => x = -2020
Vậy BMax = 0, đạt được khi x = -2020
Bài 1: Cho x,y thuộc Q. Chứng tỏ rằng:
a) l x+y l \(\le\) l x l +l y l
b) l x-y l \(\ge\) l x l -l y l . Từ bài làm trên, tìm giá trị nhỏ nhất của biểu thức: A= l x-2001 l + l x-1 l
Bài 2: Cho a + b + c = a2 + b2 + c2 = 1 và x:y:z= a:b:c. Chứng minh rằng: (x+y+z)2 = x2 + y2 z2
Bai 3: Tìm x,y biết \(\frac{x^2+y^2}{10}\)= \(\frac{x^2—2y^2}{7}\) và x4y4 = 81
Bài 4: Với giá trị nào của x thì A= l x-3 l + l x-5 l + l x-7 l đạt giá trị nhỏ nhất
Bài 5: Với giá trị nào của x thì A= l x-1 l + l x-2 l + l x-3l + l x-5 l đạt giá trị nhỏ nhất
Tìm giá trị nhỏ nhất, lớn nhất:
a, A= l 6 - 2x l - 5
b, B= 3 - l x + 1 l
c, C= - 100 - l 7-x l
d, D= - ( x + 1)^2 - l 2 - y l + 11
a.
\(\left|6-2x\right|\ge0\)
\(\Rightarrow\left|6-2x\right|-5\ge-5\)
Vậy A có giá trị nhỏ nhất là -5 khi |6 - 2x| = 0 <=> x = 3
b.
\(\left|x+1\right|\ge0\)
\(\Rightarrow3-\left|x+1\right|\le3\)
Vậy B có giá trị lớn nhất là 3 khi |x + 1| = 0 <=> x = -1
c.
\(\left|7-x\right|\ge0\)
\(\Rightarrow-100-\left|7-x\right|\le-100\)
Vậy C có giá trị lớn nhất là -100 khi |7 - x| = 0 <=> x = 7
d.
\(\left(x+1\right)^2\ge0\)
\(\Rightarrow-\left(x+1\right)^2\le0\)
\(\left|2-y\right|\ge0\)
\(\Rightarrow-\left|2-y\right|\le0\)
\(\Rightarrow-\left(x+1\right)^2-\left|2-y\right|+11\le11\)
Vậy D có giá trị lớn nhất là 11 khi:
(x + 1)2 = 0 <=> x = -12 - y = 0 <=> y = 2Bạn nào giúp mình, mình sẽ TICK cho nha
- Ari~~~
Tìm giá trị lớn nhất (nhỏ nhất) của biểu thức:
a) A = (x - 1)^2 +1; b) B = x^2 + x^4 - 1/2;
c) C = - (x - 2)^4 -|y - l| + l; d) D = 2/(x-1)^2+1
\(A=\left(x-1\right)^2+1.\\ \left(x-1\right)^2\ge0\forall x\in R.\\ 1>0.\\ \Rightarrow\left(x-1\right)^2+1\ge1\forall x\in R.\\ \Rightarrow A\ge1.\\ \Rightarrow A_{min}=1.\)
\(B=x^2+x^4-\dfrac{1}{2}.\\ x^2+x^4\ge0\forall x\in R.\\ \Leftrightarrow x^2+x^4-\dfrac{1}{2}\ge\dfrac{-1}{2}\forall x\in R.\\ \Rightarrow B\ge\dfrac{-1}{2}.\\ \Rightarrow B_{min}=\dfrac{-1}{2}.\)
\(D=\dfrac{2}{\left(x-1\right)^2}+1.\\ \left(x-1\right)^2\ge0\forall x\in R.\\ \Leftrightarrow\dfrac{2}{\left(x-1\right)^2}\ge0.\\ \Leftrightarrow\dfrac{2}{\left(x-1\right)^2}+1\ge1\forall x\in R.\\ \Rightarrow D\ge1.\\ \Rightarrow D_{min}=1.\)
Tìm GTNN ( giá trị nhỏ nhất ) của biểu thức :
A = l x + 1 l + l 3 * x - 4 l + x - 1 l
B = l x + 3 l + l 2 *x - 5 l + l x - 7 l
dấu" * "là dấu nhân nha ! Ai làm đúng mk tích cho 3 lần . cảm ơn mọi người nhiều