A = 13 + 23 + 33 + 43
A = 1/1x2 + 1/2x3 + ......... + 1/99x100
A= 1/1x2+ 1/2x3 + 1/3x4 +............+ 1/99x100 và 1
\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+....+\dfrac{1}{99\cdot100}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=1+\left(-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}\right)-\dfrac{1}{100}\)
\(A=1+0-\dfrac{1}{100}\)
\(A=1-\dfrac{1}{100}< 1\)
\(\Rightarrow A< 1\)
A=1/1x2+1/2x3+1/3x4+......+1/99x100
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
=\(1-\frac{1}{100}\)
=\(\frac{99}{100}\)
A = 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100
A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + .... + 1/99 - 1/100
A = 1 - 1/100
A = 99/100
A= 1/1x2 + 1/2x3 + 1/3x4 + .........+1/99x100
A=1/1x2+1/2x3+...+1/99x100
A=1-1/2+1/2-1/3+1/3-...+1/99-1/00
A=1-1/100
A=99/100
Tính A= 1/1x2+1/2x3+1/3x4+........+1/98x99+1/99x100
S= 1/(1x2) + 1/(2x3) +........+ 1/(99x100)
= 1/1 - 1/ 2+ 1/2 - 1/3+ 1/ 3- .............+ 1/99- 1/100
= 1-1/100=99/100
S= 1/(1x2) + 1/(2x3) +........+ 1/(99x100)
= 1/1 - 1/ 2+ 1/2 - 1/3+ 1/ 3- .............+ 1/99- 1/100
= 1-1/100=99/100
1/1x2 +1/2x3 +1/3x4+…+1/99x100
=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100=99/100
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
= 1 - 1/100
= 99/100
A=1/1x2 + 1/2x3 + ... + 1/99x100
Tính A
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{100-99}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{99}{100}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(A=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+...+\left(\frac{1}{99}-\frac{1}{100}\right)\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
Theo đề bài ta có:
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Leftrightarrow A=1-\frac{1}{100}\)
\(\Leftrightarrow A=\frac{99}{100}\)
Vậy \(\Rightarrow A=\frac{99}{100}\)
1/1x2 + 1/2x3+...+ 1/99x100 = ?
tớ vận dung công thức lớp 6:
\(\frac{1}{1x2}+\frac{1}{2x3}+.....+\frac{1}{99x100}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
= \(1-\frac{1}{100}\)
=\(\frac{99}{100}\)
1/1x2 + 1/2x3 + 1/3x4 + ... + 1/99x100 + 1/100x101 = ...
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{100\cdot101}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-...+\dfrac{1}{100}-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}\)
\(=\dfrac{100}{101}\)