Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đàm Đức Công
Xem chi tiết
Trần Mai Anh
Xem chi tiết
FAH_buồn
21 tháng 5 2019 lúc 21:10

Trả lời

Ko chép lại đề

<

<

<

<

<

<

Nguyễn Vũ Minh Hiếu
21 tháng 5 2019 lúc 21:11

Trả lời :

a)\(\frac{99}{100}< 1\)và \(\frac{100}{99}>1\)nên \(\frac{99}{100}< \frac{100}{99}\)

~ Hok tốt ~

b,....đề....

ta có :1-\(\frac{99}{100}\)=\(\frac{1}{100}\) 

         1-\(\frac{100}{101}\)\(\frac{1}{101}\) 

mà \(\frac{1}{100}\) >    \(\frac{1}{101}\) 

 => \(\frac{99}{100}\) >   \(\frac{100}{101}\)

Nguyễn Minh Nhật
Xem chi tiết
Học 24
Xem chi tiết
nguyen thi thanh loan
Xem chi tiết
tth_new
13 tháng 2 2018 lúc 8:46

Ta có: \(A=\frac{2017^{100}}{1+2017+2017^2+2017^3+...+2017^{100}}\)

\(\Leftrightarrow A=\frac{\left[\left(20.100\right)+16+1\right]^{100}}{1+2017+2017^2+2017^3+...+2017^{10}}\)

        \(B=\frac{2016^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)

\(\Leftrightarrow B=\frac{\left[\left(20.100+16\right)\right]^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)

Ta có hai tổng A và B mới để so sánh:

\(A=\frac{\left[\left(20.100\right)+16+1\right]^{100}}{1+2017+2017^2+2017^3+...+2017^{100}}\)

\(B=\frac{\left[\left(20.100\right)+16\right]^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)

 Tới đây đơn giản rồi. Bạn làm tiếp đi nhé! Mẹ mình bắt tắt máy không cho làm nên đành dừng lại ở đây thôi! Thông cảm :V

Ngô Châu Anh
Xem chi tiết
Nguyễn Huy Tú
26 tháng 5 2017 lúc 20:27

Ta có: \(A=\frac{2017^{99}+1}{2017^{100}+1}\Rightarrow2017A=\frac{2017^{100}+2017}{2017^{100}+1}=1+\frac{2016}{2017^{100}+1}\)

\(B=\frac{2017^{100}+1}{2017^{101}+1}\Rightarrow2017B=\frac{2017^{101}+2017}{2017^{101}+1}=1+\frac{2016}{2017^{101}+1}\)

\(\frac{2016}{2017^{100}+1}>\frac{2016}{2017^{101}+1}\Rightarrow1+\frac{2016}{2017^{100}+1}>1+\frac{2016}{2017^{101}+1}\)

\(\Rightarrow2017A>2017B\Rightarrow A>B\)

Vậy...

Kaori Miyazono
26 tháng 5 2017 lúc 20:27

Đặt \(A=\frac{2017^{99}+1}{2017^{100}+1}\)nên \(2017A=\frac{2017^{100}+2017}{2017^{100}+1}=\frac{2017^{100}+1+2016}{2017^{100}+1}=1+\frac{2016}{2017^{100}+1}\)

\(B=\frac{2017^{100}+1}{2017^{101}+1}\)nên \(2017B=\frac{2017^{101}+2017}{2017^{101}+1}=\frac{2017^{101}+1+2016}{2017^{101}+1}=1+\frac{2016}{2017^{101}+1}\)

Vì \(1=1;\frac{2016}{2017^{100}+1}>\frac{2016}{2017^{101}+1}\Rightarrow1+\frac{2016}{2017^{100}+1}>1+\frac{2016}{2017^{101}+1}\)

Hay \(2017A>2017B\)nên \(A>B\)

Vây \(\frac{2017^{99}+1}{2017^{1001}+1}>\frac{2017^{100}+1}{2017^{101}+1}\)

Thanh Tùng DZ
26 tháng 5 2017 lúc 20:29

đặt \(A=\frac{2017^{99}+1}{2017^{100}+1}\)\(B=\frac{2017^{100}+1}{2017^{101}+1}\)

Ta có : \(2017A=\frac{2017.\left(2017^{99}+1\right)}{2017^{100}+1}=\frac{2017^{100}+2017}{2017^{100}+1}=\frac{2017^{100}+1+2016}{2017^{100}+1}=1+\frac{2016}{2017^{100}+1}\)

\(2017B=\frac{2017.\left(2017^{100}+1\right)}{2017^{101}+1}=\frac{2017^{101}+2017}{2017^{101}+1}=\frac{2017^{101}+1+2016}{2017^{101}+1}=1+\frac{2016}{2017^{101}+1}\)

Vì \(\frac{2016}{2017^{100}+1}>\frac{2016}{2017^{101}+1}\Rightarrow1+\frac{2016}{2017^{100}+1}>1+\frac{2016}{2017^{101}+1}\Leftrightarrow10A>10B\Rightarrow A>B\)

Võ Khánh Lợi
Xem chi tiết
Ngọc Linh
18 tháng 4 2018 lúc 1:29

\(^{P\left(x\right)=x^{2018}-100x^{2017}+100x^{2016}-...+100x+2016}\) \(^{P\left(99\right)=x^{2018}-\left(99+1\right)x^{2017}+\left(99+1\right)x^{2016}-...+\left(99+1\right)x+2016}\) \(^{P\left(99\right)=x^{2018}-x^{2018}-x^{2017}+x^{2017}+x^{2016}-...+x^2+x+2016}\) \(^{P\left(99\right)=x+2016=99+2016=2115}\)

pham duc anh
Xem chi tiết
Nghi Ngo
Xem chi tiết
alibaba nguyễn
24 tháng 4 2017 lúc 18:33

a/ Ta có

\(200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)\)

\(=1+2\left(1-\frac{1}{3}\right)+2\left(1-\frac{1}{4}\right)+...+2\left(1-\frac{1}{100}\right)\)

\(=1+2\left(\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\right)\)

\(=2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\)

Thế lại bài toán ta được:

\(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}\)

\(=\frac{2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}=2\)

alibaba nguyễn
24 tháng 4 2017 lúc 18:37

b/ Ta có: 

A - B\(=\frac{-21}{10^{2016}}+\frac{12}{10^{2016}}+\frac{21}{10^{2017}}-\frac{12}{10^{2017}}\)

\(=\frac{9}{10^{2017}}-\frac{9}{10^{2016}}< 0\)

Vậy A < B

Nghi Ngo
24 tháng 4 2017 lúc 19:08

cảm ơn bạn