Tìm dư khi chia các đa thức sau
a) x^43/x^2+1
b) x^81+x^27+x^9+x^3+x/ x-1
c) x^81+x^27+x^9+x^3+x/ x^2-1
Cho đa thức f(x)=x81+x27+x9+x3+x
Tìm dư của f(x) chia cho (x-1) và f(x) chia cho (x2-1)
Ta có
x+x3+x9+x27+x81=(x2−1)P(x)+ax+bx+x3+x9+x27+x81=(x2−1)P(x)+ax+b (1)
ax+bax+b là dư
thay x=1x=1 vàx=−1x=−1 lần lượt vào (1) ta tìm được a,ba,b
công chúa thất lạc bị khùng đó đừng tin
Tìm số dư khi f(x) = x^81+x^27 + x^9 + x^3 + x chia cho x - 1
13 Tìm dư trong dư phép chia x+x^3+x^9+x^27+x^81+x^243 cho x^2-1
gọi Q(x) là thương và ax+b là số dư của phép chia trên. ta có:
\(x+x^3+x^9+x^{27}+x^{81}=\left(x^2-1\right).Q\left(x\right)+ax+b\)
với x = 1 thì: a + b = 5 (1)
với x = -1 thì: -a + b = -5 (2)
từ (1); (2) => b = 0; a = 5
=> số dư của phép chia là 5x
Gọi Q(x) là thương và ax + b là số dư của phép chia trên, ta có:
x + x3 + x9 + x27 + x81 = (x2 - 1) . Q(x) + ax + b
Với x = 1 thì a + b = 5(1)
Với x = -1 thì -a + b = -5(2)
Từ (1) : (2) => a = 5; b = 0
=> Số dư phép chia là: 5x
Đa thức dư trong phép chia đa thức \(x+x^3+x^9+x^{27}+x^{81}+x^{243}\) cho đa thức \(x^2-1\)
là ax+b khi đó a+b=?
Giải chi tiết hộ mk
Theo đề bài ta có:
f(x) = x + x3 + x9 + x27 + x81 + x243 = Q(x).(x2 - 1) + ax + b
Thế f(1), f(-1) ta có hệ:
\(\hept{\begin{cases}a+b=6\\-a+b=-6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=6\\b=0\end{cases}}\)
Vậy a + b = 6
tìm dư khi chia x+x^3+x^9+x^27 +x^81 cho x^2-1
Đa thức dư trong phép chia đa thức \(x+x^3+x^9+x^{27}+x^{81}+x^{243}\)cho đa thức \(\left(x^2-1\right)\) là \(ax+b\). Tìm \(a,b\)
Xác định dư của phép chia đa thức x + x3 + x9 x27 + x81 cho:
a) x - 1
b) x2 -1
13 Tìm dư trong dư phép chia x+x^3+x^9+x^27+x^81+x^243 cho x^2-1
Tìm dư của phép chia x^27+x^9+x^3+x cho đa thức x^2-1