\(a,8\frac{3}{4}+4\frac{1}{5}-3\frac{3}{4}\)
\(b,3\frac{1}{2}:\frac{1}{2}+3\frac{1}{2}:\frac{1}{4}\)
\(\left(\frac{-5}{12}+\frac{7}{4}-\frac{3}{8}\right)-\left[4\frac{1}{2}-7\frac{1}{3}\right]-\left(\frac{1}{4}-\frac{5}{2}\right)\)
\(\left[2\frac{1}{4}-5\frac{3}{2}\right]-\left(\frac{3}{10}-1\right)-5\frac{1}{2}+\left(\frac{1}{3}-\frac{5}{6}\right)\)
\(\frac{4}{7}-\left(3\frac{2}{5}-1\frac{1}{2}\right)-\frac{5}{21}+\left[3\frac{1}{2}-4\frac{2}{3}\right]\)
\(\frac{1}{8}-1\frac{3}{4}+\left(\frac{7}{8}-3\frac{7}{2}+\frac{3}{4}\right)-\left[\frac{7}{4}-\frac{5}{8}\right]\)
\(\left(\frac{3}{5}-2\frac{1}{10}+\frac{11}{20}\right)-\left[\frac{-3}{4}+1\frac{7}{2}\right]\)
\(\left[-2\frac{1}{5}-2\frac{2}{3}\right]-\left(\frac{1}{15}-5\frac{1}{2}\right)+\left[\frac{-1}{6}+\frac{1}{3}\right]\)
\(1\frac{1}{8}-\left(\frac{1}{15}-\frac{1}{2}+\frac{-1}{6}\right)+\left[\frac{5}{4}+\frac{3}{2}\right]\)
\(\frac{5}{6}-\left(1\frac{1}{3}-1\frac{1}{2}\right)+\left[\frac{5}{12}-\frac{3}{4}-\frac{1}{6}\right]\)
\(1\frac{1}{4}-\left(\frac{7}{12}-\frac{2}{3}-1\frac{3}{8}\right)+\left[\frac{5}{24}-2\frac{1}{2}\right]-\frac{1}{6}-\left[\frac{-3}{4}\right]\)
\(-2\frac{1}{5}+2\frac{3}{10}-\left(\frac{6}{20}-\left[\frac{2}{8}-1\frac{1}{2}\right]\right)+\left[\frac{7}{20}-1\frac{1}{4}\right]\)
\(-\left[1\frac{2}{3}-3\frac{1}{2}+\frac{1}{4}\right]+\left(\frac{2}{6}-\frac{5}{12}\right)-\left(\frac{1}{3}-\left[\frac{1}{4}-\frac{1}{3}\right]\right)\)
\(-\frac{4}{5}-\left(1\frac{1}{10}-\frac{7}{10}\right)+\left[\frac{3}{4}-1\frac{1}{5}\right]+1\frac{1}{2}\)
\(\frac{3}{21}-\frac{5}{14}+\left[1\frac{1}{3}-5\frac{1}{2}+\frac{5}{14}\right]-\left(\frac{1}{6}-\frac{3}{7}+\frac{1}{3}\right)\)
\(-1\frac{2}{5}+\left[1\frac{3}{10}-\frac{7}{20}-1\frac{1}{4}\right]-\left(\frac{1}{5}-\left[\frac{3}{4}-1\frac{1}{2}\right]\right)\)
\(2\frac{1}{3}-\left(\frac{1}{2}-2\frac{1}{6}+\frac{3}{4}\right)+\left[\frac{5}{12}-1\frac{1}{3}\right]-\frac{7}{8}+3\frac{1}{2}\)
\(2\frac{1}{4}-1\frac{3}{5}-\left(\frac{9}{20}-\frac{7}{10}\right)+\left[1\frac{3}{5}-2\frac{1}{2}\right]+\frac{3}{4}\)
\(\left[\frac{8}{3}-5\frac{1}{4}+\frac{1}{6}\right]-\frac{7}{4}+\frac{-5}{12}-\left(1-1\frac{1}{2}+\frac{1}{3}\right)\)
\(\left(\frac{1}{4}-\left[1\frac{1}{4}-\frac{7}{10}\right]+\frac{1}{2}\right)-2\frac{1}{5}-1\frac{3}{10}+\left[1-\frac{1}{2}\right]\)
TRÌNH BÀY GIÚP MÌNH NHA
\(B=\frac{4+\frac{4}{5}+\frac{4}{155}-\frac{4}{1555}+\frac{4}{235}}{8+\frac{8}{5}+\frac{16}{310}+\frac{8}{235}-\frac{8}{1555}}.\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}{4+\frac{3}{2}+\frac{3}{4}}\)
B=3/2 xin loi nhavì cách trình bày trên này khó quá, đọc chắc bạn ko hiểu đâu
Chứng minh rằng:
a. \(\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+\frac{4}{3^5}+...+\frac{99}{3^{100}}+\frac{100}{3^{101}}< \frac{1}{4}\)
b.\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
c.\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{1}{16}\)
d. \(\frac{1}{5^2}-\frac{2}{5^3}+\frac{3}{5^4}-\frac{4}{5^5}+...+\frac{99}{5^{100}}-\frac{100}{5^{101}}< \frac{1}{36}\)
Bài 1 : Tính :
B = \(\frac{\frac{1}{2}+\frac{3}{4}-\frac{5}{6}}{\frac{1}{4}+\frac{3}{8}-\frac{5}{12}}+\frac{\frac{3}{4}+\frac{3}{5}-\frac{3}{8}}{\frac{1}{4}+\frac{1}{5}-\frac{1}{8}}\)
Bài 2 : tìm x và y
a) x3 - 36x = 0
b) \(\frac{x-3}{y-2}=\frac{3}{2}\)và x - y = 4 ( x , y \(\in\)Z )
Bài 1:
\(B=\frac{\frac{1}{2}+\frac{3}{4}-\frac{5}{6}}{\frac{1}{4}+\frac{3}{8}-\frac{5}{12}}+\frac{\frac{3}{4}+\frac{3}{5}-\frac{3}{8}}{\frac{1}{4}+\frac{1}{5}-\frac{1}{8}}\)\(=\frac{\frac{1}{2}+\frac{3}{4}-\frac{5}{6}}{\frac{1}{2}\left(\frac{1}{2}+\frac{3}{4}-\frac{5}{6}\right)}+\frac{3\left(\frac{1}{4}+\frac{1}{5}-\frac{1}{8}\right)}{\frac{1}{4}+\frac{1}{5}-\frac{1}{8}}\)
\(=\frac{1}{\frac{1}{2}}+3\) \(=2+3\) \(=5\)
Vậy B=5
Bài 2:
a) x3 - 36x = 0
=> x(x2-36)=0
=> x(x2+6x-6x-36)=0
=> x[x(x+6)-6(x+6) ]=0
=> x(x+6)(x-6)=0
\(\Rightarrow\orbr{\begin{cases}^{x=0}x+6=0\\x-6=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}^{x=0}x=-6\\x=6\end{cases}}\)
Vậy x=0; x=-6; x=6
b) (x - y = 4 => x=4+y)
x−3y−2 =32
=>2(x-3) = 3(y-2)
=>2x-6= 3y-6
=>2x-3y=0
=>2(4+y)-3y=0
=>8+2y-3y=0
=>8-y=0
=>y=8 (thỏa mãn)
Do đó x=4+y=4+8=12 (thỏa mãn)
Vậy x=12 và y =8
B= 1/2 + 3/4 - 5/6/1/2(1.2 + 3/4 - 5/6) + 3(1/4+ 1/5 - 1/8)/ 1/4 1/5 - 1/8
B= 1/ 1/2 + 3
B= 2+3
B=5
B2:
a) x^3 - 36x = 0
x(x^2 - 36) = 0
=> x=0 hoặc x^2-36=0
=> x= 0 hoặc x^2=36
=> x=0 hoặc x= +- 6
b) x-y = 4 => x= 4+y
thay x=4+y vào x- 3/ y-2=3/2, có:
4+y-3/ y+2 = 3/2
y+1/ y+2 = 3/2
y+2 -1/ y+2 = 3/2
1 - 1/y+2 = 3/2
1/y+2= 1-3/2
1/y+2 = -1/2
=> y+2 = -2
=> y= -4
Dp x= 4+y => x= 4-4
=> x=0
Vậy x=0 và y=-4
Tính nhah ---- giúp mik giải nâ các bn thank nhiều nhiều
a)\(\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}}:\frac{3+\frac{3}{2}+\frac{3}{3}+\frac{3}{4}}{2-\frac{2}{2}+\frac{2}{3}-\frac{2}{4}}+\frac{1}{3}\)
b) \(\frac{\frac{1}{3}-\frac{1}{5}-\frac{1}{7}}{\frac{2}{3}-0,4-\frac{2}{7}}+\frac{\frac{3}{8}-\frac{3}{16}-\frac{3}{32}+\frac{3}{64}}{\frac{1}{4}-\frac{1}{8}-\frac{1}{16}+\frac{1}{32}}\)
c) \(\frac{0,4-\frac{2}{9}+\frac{2}{11}}{1,4-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-0,25+\frac{1}{5}}{1\frac{1}{6}-0,875+0,7}\)
So sánh:\(\frac{\frac{\frac{1}{2}}{\frac{3}{4}}}{\frac{\frac{5}{6}}{\frac{7}{8}}}+\frac{\frac{\frac{8}{7}}{\frac{6}{5}}}{\frac{\frac{4}{3}}{\frac{2}{1}}}\) và\(\frac{\frac{\frac{1}{2}}{\frac{3}{4}}+\frac{\frac{8}{7}}{\frac{6}{5}}}{\frac{\frac{5}{6}}{\frac{7}{8}}+\frac{\frac{4}{3}}{\frac{2}{1}}}\)và \(\frac{\frac{\frac{1}{2}+\frac{8}{7}}{\frac{3}{4}+\frac{6}{5}}}{\frac{\frac{5}{6}+\frac{4}{3}}{\frac{7}{8}+\frac{2}{1}}}\)và\(\frac{\frac{\frac{1+8}{2+7}}{\frac{3+6}{4+5}}}{\frac{5+4}{\frac{6+3}{2+1}}}\)
1. tinh` giá trị biểu thức ( tính nhanh nếu có thế )
\(a)\frac{-6}{11}.\frac{5}{13}+\frac{-6}{11}.\frac{8}{13}-\left(\frac{-2}{5}\right)^0\) \(b)\left(2\frac{2}{3}+3\frac{1}{2}\right);\left(4\frac{3}{4}-2\frac{1}{6}\right)+\frac{19}{31}\) \(c)2,4:\left(-2\right)^3+\left(3-\frac{9}{11}\right).1\frac{3}{8}\)
\(d)\left(-\frac{3}{4}\right)^2:\frac{-3}{8}+\frac{1}{2}-\frac{3}{4}-\left(\frac{-78}{57}\right)^0\)
2. tìm x
\(a)x+\frac{-1}{5}=\left(-\frac{3}{4^{ }}\right)^2\) \(b)\left|\frac{5}{2}x+\frac{2}{3}\right|-\frac{1}{4}=0\) \(c)\frac{2}{3}x-\frac{1}{2}=\frac{5}{12}+\frac{1}{2}x\) \(d)\left(x-\frac{1}{4}\right)^4=\frac{1}{81}\)
\(e)4x+3\frac{1}{4}=x-\frac{1}{4}\) \(g)\left(x-\frac{1}{3}\right)^3=\frac{1}{27}\)
Tính giá trị của các biểu thức sau:
\(\begin{array}{l}a)(8 + 2\frac{1}{3} - \frac{3}{5}) - (5 + 0,4) - (3\frac{1}{3} - 2)\\b)(7 - \frac{1}{2} - \frac{3}{4}):(5 - \frac{1}{4} - \frac{5}{8})\end{array}\)
a) Cách 1:
\(\begin{array}{l}(8 + 2\frac{1}{3} - \frac{3}{5}) - (5 + 0,4) - (3\frac{1}{3} - 2)\\ = (8 + \frac{7}{3} - \frac{3}{5}) - (5 + \frac{4}{{10}}) - (\frac{{10}}{3} - 2)\\ = 8 + \frac{7}{3} - \frac{3}{5} - 5 - \frac{2}{5} - \frac{{10}}{3} + 2\\ = (8 - 5 + 2) + (\frac{7}{3} - \frac{{10}}{3}) - (\frac{3}{5} + \frac{2}{5})\\ = 5 + \frac{{ - 3}}{3} - \frac{5}{5}\\ = 5 + ( - 1) - 1\\ = 3\end{array}\)
Cách 2:
\(\begin{array}{l}(8 + 2\frac{1}{3} - \frac{3}{5}) - (5 + 0,4) - (3\frac{1}{3} - 2)\\ = (8 + \frac{7}{3} - \frac{3}{5}) - (5 + \frac{4}{{10}}) - (\frac{{10}}{3} - 2)\\ = (\frac{{120}}{{15}} + \frac{{35}}{{15}} - \frac{9}{{15}}) - (\frac{{25}}{5} + \frac{2}{5}) - (\frac{{10}}{3} - \frac{6}{3})\\ = \frac{{146}}{{15}} - \frac{{27}}{5} - \frac{4}{3}\\ = \frac{{146}}{{15}} - \frac{{81}}{{15}} - \frac{{20}}{{15}}\\ = \frac{{45}}{{15}}\\ = 3\end{array}\)
b)
\(\begin{array}{l}(7 - \frac{1}{2} - \frac{3}{4}):(5 - \frac{1}{4} - \frac{5}{8})\\ = (\frac{{28}}{4} - \frac{2}{4} - \frac{3}{4}):(\frac{{40}}{8} - \frac{2}{8} - \frac{5}{8})\\ = \frac{{23}}{4}:\frac{{33}}{8}\\ = \frac{{23}}{4}.\frac{8}{{33}}\\ = \frac{{46}}{{33}}\end{array}\)
Tìm A:B, biết:
A=\(\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+\frac{6}{4}+\frac{5}{5}+\frac{4}{6}+\frac{3}{7}+\frac{2}{8}+\frac{1}{9}\)
B=\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{9}+\frac{1}{10}\)
\(\frac{A}{B}=\frac{\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+\frac{6}{4}+\frac{5}{5}+\frac{4}{6}+\frac{3}{7}+\frac{2}{8}+\frac{2}{9}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{1}{9}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{\frac{10}{2}+\frac{10}{3}+\frac{10}{4}+...+\frac{10}{9}+\frac{10}{10}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{10\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}\)
\(\frac{A}{B}=10\)
\(A=\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{2}{8}+\frac{1}{9}\)
Tách 9=1+1+...+1 ( có 9 số 1)
\(\Rightarrow A=1+\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{2}{8}+1\right)+\left(\frac{1}{9}+1\right)\)
\(A=\frac{10}{10}+\frac{10}{2}+\frac{10}{3}+...+\frac{10}{8}+\frac{10}{9}\)
\(A=10.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)\)
\(\Rightarrow A:B=\frac{10.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}=10\) ( vì \(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\ne0\) )
Vậy \(A:B=10\)