Giải Phương trình sau : \(\sqrt{\frac{2}{3-x}}+5\sqrt{\frac{3}{4-x}}=6\)
Giải phương trình bậc nhất 1 ẩn sau đây:
\(\frac{2+\sqrt{3}}{3-\sqrt{5}}x-\frac{1-\sqrt{6}}{3+\sqrt{2}}\left(x-\frac{3-\sqrt{7}}{4-\sqrt{3}}\right)=\frac{15-\sqrt{11}}{2\sqrt{3}-5}\)
a)Giải các phương trình sau bằng phương pháp đặt ẩn phụ:
1) \(x^2-3x-3=\frac{3\left(\sqrt[3]{x^3-4x^2+4}-1\right)}{1-x}\) ;2)\(1+\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
b) Giải các phương trình sau(không giới hạn phương pháp):
1)\(2\left(1-x\right)\sqrt{x^2+2x-1}=x^2-2x-1\) ; 2)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)
3)\(\frac{3x^2+3x-1}{3x+1}=\sqrt{x^2+2x-1}\) ; 4) \(\frac{2x^3+3x^2+11x-8}{3x^2+4x+1}=\sqrt{\frac{10x-8}{x+1}}\)
5)\(13x-17+4\sqrt{x+1}=6\sqrt{x-2}\left(1+2\sqrt{x+1}\right)\);
6)\(x^2+8x+2\left(x+1\right)\sqrt{x+6}=6\sqrt{x+1}\left(\sqrt{x+6}+1\right)+9\)
7)\(x^2+9x+2+4\left(x+1\right)\sqrt{x+4}=\frac{5}{2}\sqrt{x+1}\left(2+\sqrt{x+4}\right)\)
8)\(8x^2-26x-2+5\sqrt{2x^4+5x^3+2x^2+7}\)
À do nãy máy lag sr :) Chứ bài đặt ẩn phụ mệt lắm :)
Giải phương trình:
\(a)\sqrt{x^2+2x+4}\ge x-2\\ b)x=\sqrt{x-\frac{1}{x}}+\sqrt{x+\frac{1}{x}}\\ c)\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2\sqrt{2x-5}}\\ d)x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\\ e)\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
Bạn xem lại đề câu b và c nhé !
a) \(\sqrt{x^2+2x+4}\ge x-2\) \(\left(ĐK:x\ge2\right)\)
\(\Leftrightarrow x^2+2x+4>x^2-4x+4\)
\(\Leftrightarrow6x>0\Leftrightarrow x>0\) kết hợp với ĐKXĐ
\(\Rightarrow x\ge2\) thỏa mãn đề.
d) \(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
\(ĐKXĐ:x\ge2,y\ge3,z\ge5\)
Pt tương đương :
\(\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-3}=2\\\sqrt{z-5}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}\) ( Thỏa mãn ĐKXĐ )
e) \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\) (1)
\(ĐKXĐ:x\ge0,y\ge1,z\ge2\)
Phương trình (1) tương đương :
\(x+y+z-2\sqrt{x}-2\sqrt{y-1}-2\sqrt{z-2}=0\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=1\\\sqrt{y-1}=1\\\sqrt{z-2}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)( Thỏa mãn ĐKXĐ )
giải phương trình vô tỉ sau
1) \(\frac{6-2x}{\sqrt{5-x}}+\frac{6+2x}{\sqrt{5+x}}=\frac{8}{3}\)
2) \(\sqrt[3]{x+\frac{1}{2}}=16x^3-1\)
1/ \(\frac{6-2x}{\sqrt{5-x}}+\frac{6+2x}{\sqrt{5+x}}=\frac{8}{3}\)
\(\Leftrightarrow\frac{3-x}{\sqrt{5-x}}+\frac{3+x}{\sqrt{5+x}}=\frac{4}{3}\)
Đặt \(\hept{\begin{cases}\sqrt{5-x}=a\\\sqrt{5+x}=b\end{cases}}\) thì ta có:
\(\hept{\begin{cases}\frac{a^2-2}{a}+\frac{b^2-2}{b}=\frac{4}{3}\\a^2+b^2=10\end{cases}}\)
Tới đây thì đơn giản rồi nhé
2/ \(\sqrt[3]{x+\frac{1}{2}}=16x^3-1\)
\(\Leftrightarrow x+\frac{1}{2}=\left(16x^3-1\right)^3\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)\left(8x^2+4x+1\right)\left(512x^6+64x^4-64x^3+8x^2-4x+3\right)=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
Giải phương trình :
a)\(\sqrt{x+\frac{3}{4}+\sqrt{x+\frac{1}{2}}}=x+\frac{5}{4}\)
b)\(\frac{2x}{2x^2-5x+3}+\frac{13}{2x^2+x+3}=6\)
Giải hệ phương trình sau \(\left\{{}\begin{matrix}\frac{3}{\sqrt{x^2+2}}-\frac{2}{\sqrt{y}-3}=2\\\frac{4}{\sqrt{x^2+2}}+\frac{1}{\sqrt{y}-3}=\frac{5}{6}\end{matrix}\right.\)
giải phương trình sau?
1)\(\sqrt{x+1}+\sqrt{x+10}=\sqrt{x+5}+\sqrt{x+2}\)
2) \(8\sqrt{x^3+1}=3\left(x^2-2x\right)\)
3) \(20\sqrt{\frac{x-2}{x+1}}-5\sqrt{\frac{x+2}{x-1}}=-4\sqrt[4]{\frac{x^2-4}{x^2-1}}\)
4)\(\sqrt{x^2+x-1}+\sqrt{-x^2+x+1}=x^2-x-2\)
5) \(\frac{4x^2}{\sqrt{x^4+x}}=-x^2+4x-3\)
6)\(\sqrt[4]{x}+\sqrt[4]{2-x}=2\)
6/ Đặt \(\hept{\begin{cases}\sqrt[4]{x}=a\\\sqrt[4]{2-x}=b\end{cases}}\)
\(\Rightarrow b^4+a^4=2\)
Từ đó ta có: a + b = 2
Ta có: \(a^4+b^2\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(a+b\right)^4}{8}=\frac{16}{8}=2\)
Dấu = xảy ra khi a = b = 1
=> x = 1
giải phương trình
\(\frac{\sqrt{x+5}}{\sqrt{x-4}}=\frac{\sqrt{x-2}}{\sqrt{x+3}}\)
giải các phương trình vô tỉ sau
\(2x+\sqrt{4-2x^2}+\sqrt{6-y}+\sqrt{22-y}=10\)
\(\frac{3x+3}{\sqrt{x}}=4+\frac{x+1}{\sqrt{x^2}-x+1}\)
\(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)