Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Diệu Linh
Xem chi tiết
Vân Sarah
Xem chi tiết
Trần Minh Hoàng
6 tháng 10 2018 lúc 18:54

ĐK: \(\hept{\begin{cases}b\ne0\\d\ne0\end{cases}}\)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có:

\(\frac{2017a+2018b}{2018a-2019b}=\frac{2017bk+2018b}{2018bk-2019b}=\frac{b\left(2017k+2018\right)}{b\left(2018k-2019\right)}=\frac{2017k+2018}{2018k-2019}\) (1)

\(\frac{2017c+2018d}{2018c-2019d}=\frac{2017dk+2018d}{2018dk-2019d}=\frac{d\left(2017k+2018\right)}{d\left(2018k-2019\right)}=\frac{2017k+2018}{2018k-2019}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{2017a+2018b}{2018a-2019b}=\frac{2017c+2018d}{2018c-2019d}\)

Nguyệt
6 tháng 10 2018 lúc 18:56

\(\frac{a}{b}=\frac{c}{d}=>ad=bc=>\frac{a}{c}=\frac{b}{d}\)

\(\frac{a}{c}=\frac{b}{d}=\frac{2017a}{2017c}=\frac{2018b}{2018c}=\frac{2019a}{2019c}=\frac{2019b}{2019c}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{2017a}{2017c}=\frac{2018b}{2018c}=\frac{2019a}{2019c}=\frac{2019b}{2019c}=\frac{2017a+2018b}{2017c+2018d}=\frac{2018a-2019c}{2018c-2019d}\)

\(=>2017a+2018b.\left(2018c-2019d\right)=2017c+2018d.\left(2018a-2019b\right)\)

\(\frac{2017a+2018b}{2018b-2019b}=\frac{2017c+2018d}{2018c-2019d}\)

I don
6 tháng 10 2018 lúc 19:00

Đề bài: ... cmr \(\frac{2017a+2018b}{2018a-2019b}=\frac{2017c+2018d}{2018c-2019d}\)

ta có: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{2017a}{2017c}=\frac{2018a}{2018c}=\frac{2019b}{2019d}=\frac{2018b}{2018d}\) (*)

mà \(\frac{2017a}{2017c}=\frac{2018b}{2018d}=\frac{2017a+2018b}{2017c+2018d}\)

\(\frac{2018a}{2018c}=\frac{2019b}{2019d}=\frac{2018a-2019b}{2018c-2019d}\)

Từ (*) \(\Rightarrow\frac{2017a+2018b}{2017c+2018d}=\frac{2018a-2019b}{2018c-2019d}\Rightarrow\frac{2017a+2018b}{2018a-2019b}=\frac{2017c+2018d}{2018c-2019d}\)

Yến Nguyễn
Xem chi tiết
Nguyễn Quang Ngọc Trác
12 tháng 3 2018 lúc 5:40

Ta có:

a/b = c/d => 2018a/2018b = 2018c/2018d = 2018a - 2018c / 2018b- 2018d

a/b = c/d => 2017a/2017b = 2017c/2017d =2017a+ 2017c/ 2017b+ 2017d

=> 2018a-2018c/2018b-2018d = 2017a+2017c/2017b+2017d (=a/b=c/d)

Phạm Thùy Dung
Xem chi tiết
Phạm Thùy Dung
5 tháng 12 2019 lúc 20:36

Đặt bằng k nhé

Khách vãng lai đã xóa
coolkid
5 tháng 12 2019 lúc 21:12

Dăm ba mấy bài đặt k:v

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

Ta có:

\(\frac{2018a^2+2019b^2}{2018a^2-2019b^2}=\frac{2018b^2k^2+2019b^2}{2018b^2k^2-2019b^2}=\frac{b^2\left(2018k^2+2019\right)}{b^2\left(2018k^2-2019\right)}=\frac{2018k^2+2019}{2018k^2-2019}\)

\(\frac{2018c^2+2019d^2}{2018c^2-2019d^2}=\frac{2018d^2k^2+2019d^2}{2018d^2k^2-2019d^2}=\frac{d^2\left(2018k^2+2019\right)}{d^2\left(2018k^2-2019\right)}=\frac{2018k^2+2019}{2018k^2-2019}\)

Từ đó \(\frac{2018a^2+2019b^2}{2018a^2-2019b^2}=\frac{2018c^2+2019d^2}{2018c^2-2019d^2}\)

Khách vãng lai đã xóa
Mạch Trần Quang Nhật
Xem chi tiết
Trà My
7 tháng 8 2017 lúc 16:48

\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{2017a}{2017c}=\frac{2018b}{2018d}=\frac{2018a}{2018c}=\frac{2019b}{2019d}\)

Áp dụng tính chất dãy tỉ số bằng nhau: 

\(\frac{2017a}{2017c}=\frac{2018b}{2018d}=\frac{2018a}{2018c}=\frac{2019b}{2019d}=\frac{2017a-2018b}{2017c-2018d}=\frac{2018a+2019b}{2018c+2019d}\)

<=>\(\left(2017a-2018b\right)\left(2018c+2019d\right)=\left(2018a+2019b\right)\left(2017c-2018d\right)\)

<=>\(\frac{2017a-2018b}{2018a+2019b}=\frac{2017c-2017d}{2018x+2019d}\)(đpcm)

Việt Anh 5c
8 tháng 8 2017 lúc 7:42

nhật gà

Nguyễn Tùng
Xem chi tiết
Incursion_03
15 tháng 1 2019 lúc 8:24

Có: \(\frac{2018a+3}{1+b^2}=2018a+3-\frac{b^2\left(2018a+3\right)}{1+b^2}\) (Làm tắt ráng hiểu ^^)

                                \(\ge2018a+3-\frac{b^2\left(2018a+3\right)}{2b}\left(Cauchy\right)\)

                                  \(=2018a+3-\frac{b\left(2018a+3\right)}{2}\)

                                   \(=2018a+3-\frac{2018ab+3b}{2}\)

Tương tự \(\frac{2018b+3}{1+c^2}\ge2018b+3-\frac{2018bc+3b}{2}\)

                \(\frac{2018c+3}{1+a^2}\ge2018c+3-\frac{2018ac+3a}{2}\)

CỘng vế với vế của các bđt trên lại ta được 

\(A\ge2018\left(a+b+c\right)+9-\frac{2018\left(ab+bc+ca\right)+3\left(a+b+c\right)}{2}\)

     \(=2018\left(a+b+c\right)+9-\frac{6054+3\left(a+b+c\right)}{2}\)

       \(=2018\left(a+b+c\right)-\frac{3\left(a+b+c\right)}{2}-3018\)

       \(=\frac{4033\left(a+b+c\right)}{2}-3018\)

Ta có bđt phụ : \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\)(1)

Thật vậy \(\left(1\right)\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)   

                       \(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\ge3ab+3bc+3ca\)

                     \(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)

                      \(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

                   \(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(Luôn đúng)

Nên (1) được chứng minh

ÁP dụng (1) ta được \(A\ge\frac{4033\left(a+b+c\right)}{2}-3018\ge\frac{4033}{2}\sqrt{3\left(ab+bc+ca\right)}-3018\)

                                                                                                     \(=\frac{4033}{2}\sqrt{3.3}-3018\)

                                                                                                       \(=\frac{6063}{2}\)

Dấu "='' xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b=c\\ab+bc+ca=3\end{cases}\Leftrightarrow}a=b=c=1\)

Vậy \(A_{min}=\frac{6063}{2}\Leftrightarrow a=b=c=1\)

Vũ Thu Hà
Xem chi tiết
Vũ Minh Tuấn
6 tháng 10 2019 lúc 18:18

Bài 1:

a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\)

\(\Rightarrow\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}.\)

\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\left(đpcm\right).\)

Mình làm được thế thôi nhé.

Chúc bạn học tốt!

Nam thần châu Á
Xem chi tiết
Thiên An
1 tháng 8 2018 lúc 20:41

Ta có bđt \(ab^2+bc^2+ca^2\le\frac{1}{3}\left(a+b+c\right)\left(a^2+b^2+c^2\right)=a^2+b^2+c^2\)

\(P=2017\left(\frac{a^3}{1+b^2}+\frac{b^3}{1+c^2}+\frac{c^3}{1+a^2}\right)\)

Ta có: \(\frac{a^3}{1+b^2}+\frac{a\left(1+b^2\right)}{4}\ge2\sqrt{\frac{a^3}{1+b^2}.\frac{a\left(1+b^2\right)}{4}}=a^2\)

Tương tự suy ra \(\frac{a^3}{1+b^2}+\frac{b^3}{1+c^2}+\frac{c^3}{1+a^2}\ge\left(a^2+b^2+c^2\right)-\frac{1}{4}\left(a+b+c\right)-\frac{1}{4}\left(ab^2+bc^2+ca^2\right)\)

\(\ge\left(a^2+b^2+c^2\right)-\frac{3}{4}-\frac{1}{4}\left(a^2+b^2+c^2\right)=\frac{3}{4}\left(a^2+b^2+c^2\right)-\frac{3}{4}\ge\frac{3}{4}.3-\frac{3}{4}=\frac{3}{2}\)

Phạm Thùy Dung
Xem chi tiết
Nguyễn Ngọc Anh Minh
4 tháng 12 2019 lúc 13:39

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

\(\Rightarrow\frac{2018a^2}{2018c^2}=\frac{2019b^2}{2019d^2}=\frac{2018a^2+2019b^2}{2018c^2+2019d^2}=\frac{2018a^2-2019b^2}{2018c^2-2019d^2}\)

\(\Rightarrow\frac{2018a^2+2019b^2}{2018a^2-2019b^2}=\frac{2018c^2+2019d^2}{2018c^2-2019d^2}\left(dpcm\right)\)

Khách vãng lai đã xóa