\(\frac{2017a^2+ab}{2018a^2-8b^2}=\frac{2017c^2+cd}{2018c^2+8d}\)
Chứng minh: \(\frac{a}{b}=\frac{c}{d}\)
a) \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
b) \(\frac{2017a^2+ab}{2018a^2-8b^2}=\frac{2017c^2+cd}{2018c^2-8d^2}\)
Cho \(\frac{a}{b}\)= \(\frac{c}{d}\)CMR \(\frac{2017a+2018}{2018a-2019b}\)= \(\frac{2017c+2018d}{2018c-2019d}\)
ĐK: \(\hept{\begin{cases}b\ne0\\d\ne0\end{cases}}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có:
\(\frac{2017a+2018b}{2018a-2019b}=\frac{2017bk+2018b}{2018bk-2019b}=\frac{b\left(2017k+2018\right)}{b\left(2018k-2019\right)}=\frac{2017k+2018}{2018k-2019}\) (1)
\(\frac{2017c+2018d}{2018c-2019d}=\frac{2017dk+2018d}{2018dk-2019d}=\frac{d\left(2017k+2018\right)}{d\left(2018k-2019\right)}=\frac{2017k+2018}{2018k-2019}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{2017a+2018b}{2018a-2019b}=\frac{2017c+2018d}{2018c-2019d}\)
\(\frac{a}{b}=\frac{c}{d}=>ad=bc=>\frac{a}{c}=\frac{b}{d}\)
\(\frac{a}{c}=\frac{b}{d}=\frac{2017a}{2017c}=\frac{2018b}{2018c}=\frac{2019a}{2019c}=\frac{2019b}{2019c}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{2017a}{2017c}=\frac{2018b}{2018c}=\frac{2019a}{2019c}=\frac{2019b}{2019c}=\frac{2017a+2018b}{2017c+2018d}=\frac{2018a-2019c}{2018c-2019d}\)
\(=>2017a+2018b.\left(2018c-2019d\right)=2017c+2018d.\left(2018a-2019b\right)\)
\(\frac{2017a+2018b}{2018b-2019b}=\frac{2017c+2018d}{2018c-2019d}\)
Đề bài: ... cmr \(\frac{2017a+2018b}{2018a-2019b}=\frac{2017c+2018d}{2018c-2019d}\)
ta có: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{2017a}{2017c}=\frac{2018a}{2018c}=\frac{2019b}{2019d}=\frac{2018b}{2018d}\) (*)
mà \(\frac{2017a}{2017c}=\frac{2018b}{2018d}=\frac{2017a+2018b}{2017c+2018d}\)
\(\frac{2018a}{2018c}=\frac{2019b}{2019d}=\frac{2018a-2019b}{2018c-2019d}\)
Từ (*) \(\Rightarrow\frac{2017a+2018b}{2017c+2018d}=\frac{2018a-2019b}{2018c-2019d}\Rightarrow\frac{2017a+2018b}{2018a-2019b}=\frac{2017c+2018d}{2018c-2019d}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)
cm:\(\dfrac{2018a-2018c}{2018b-2018c}=\dfrac{2017a+2017c}{2017b+2017d}\)
Ta có:
a/b = c/d => 2018a/2018b = 2018c/2018d = 2018a - 2018c / 2018b- 2018d
a/b = c/d => 2017a/2017b = 2017c/2017d =2017a+ 2017c/ 2017b+ 2017d
=> 2018a-2018c/2018b-2018d = 2017a+2017c/2017b+2017d (=a/b=c/d)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) . Chứng minh rằng ta có tỉ lệ thức sau :
\(\frac{2018a^2+2019b^2}{2018a^2-2019b^2}=\frac{2018c^2+2019d^2}{2018c^2-2019d^2}\)
Dăm ba mấy bài đặt k:v
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Ta có:
\(\frac{2018a^2+2019b^2}{2018a^2-2019b^2}=\frac{2018b^2k^2+2019b^2}{2018b^2k^2-2019b^2}=\frac{b^2\left(2018k^2+2019\right)}{b^2\left(2018k^2-2019\right)}=\frac{2018k^2+2019}{2018k^2-2019}\)
\(\frac{2018c^2+2019d^2}{2018c^2-2019d^2}=\frac{2018d^2k^2+2019d^2}{2018d^2k^2-2019d^2}=\frac{d^2\left(2018k^2+2019\right)}{d^2\left(2018k^2-2019\right)}=\frac{2018k^2+2019}{2018k^2-2019}\)
Từ đó \(\frac{2018a^2+2019b^2}{2018a^2-2019b^2}=\frac{2018c^2+2019d^2}{2018c^2-2019d^2}\)
Cho \(\frac{a}{b}=\frac{c}{d}\).CMR \(\frac{2017-2018b}{2018a+2019b}=\frac{2017c-2018d}{2018c+2019d}\)
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{2017a}{2017c}=\frac{2018b}{2018d}=\frac{2018a}{2018c}=\frac{2019b}{2019d}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{2017a}{2017c}=\frac{2018b}{2018d}=\frac{2018a}{2018c}=\frac{2019b}{2019d}=\frac{2017a-2018b}{2017c-2018d}=\frac{2018a+2019b}{2018c+2019d}\)
<=>\(\left(2017a-2018b\right)\left(2018c+2019d\right)=\left(2018a+2019b\right)\left(2017c-2018d\right)\)
<=>\(\frac{2017a-2018b}{2018a+2019b}=\frac{2017c-2017d}{2018x+2019d}\)(đpcm)
Cho 3 số a,b,c>0 thỏa mãn ab + bc + ca = 3
Tìm \(A_{min}=\frac{2018a+3}{1+b^2}+\frac{2018b+3}{1+c^2}+\frac{2018c+3}{1+a^2}\)
Có: \(\frac{2018a+3}{1+b^2}=2018a+3-\frac{b^2\left(2018a+3\right)}{1+b^2}\) (Làm tắt ráng hiểu ^^)
\(\ge2018a+3-\frac{b^2\left(2018a+3\right)}{2b}\left(Cauchy\right)\)
\(=2018a+3-\frac{b\left(2018a+3\right)}{2}\)
\(=2018a+3-\frac{2018ab+3b}{2}\)
Tương tự \(\frac{2018b+3}{1+c^2}\ge2018b+3-\frac{2018bc+3b}{2}\)
\(\frac{2018c+3}{1+a^2}\ge2018c+3-\frac{2018ac+3a}{2}\)
CỘng vế với vế của các bđt trên lại ta được
\(A\ge2018\left(a+b+c\right)+9-\frac{2018\left(ab+bc+ca\right)+3\left(a+b+c\right)}{2}\)
\(=2018\left(a+b+c\right)+9-\frac{6054+3\left(a+b+c\right)}{2}\)
\(=2018\left(a+b+c\right)-\frac{3\left(a+b+c\right)}{2}-3018\)
\(=\frac{4033\left(a+b+c\right)}{2}-3018\)
Ta có bđt phụ : \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\)(1)
Thật vậy \(\left(1\right)\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\ge3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(Luôn đúng)
Nên (1) được chứng minh
ÁP dụng (1) ta được \(A\ge\frac{4033\left(a+b+c\right)}{2}-3018\ge\frac{4033}{2}\sqrt{3\left(ab+bc+ca\right)}-3018\)
\(=\frac{4033}{2}\sqrt{3.3}-3018\)
\(=\frac{6063}{2}\)
Dấu "='' xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b=c\\ab+bc+ca=3\end{cases}\Leftrightarrow}a=b=c=1\)
Vậy \(A_{min}=\frac{6063}{2}\Leftrightarrow a=b=c=1\)
B1: Cho tỷ lệ thức \(\frac{a}{b}\) = \(\frac{c}{d}\). Chứng minh rằng
a) \(\frac{a-b}{b}\)= \(\frac{c-d}{d}\)
b) \(\frac{2016a-2017b}{2018c+2019d}\) = \(\frac{2016c-2017d}{2018a+2019b}\)
c) \(\frac{7a^2+3ab}{11a^2-8b^2}\) = \(\frac{7c^2+3cd}{11c^2-8d^2}\)
B2: Tìm GTNN của:
A = ( x4 + 3)2 B = | 0,5 + x | + (y - 1,3)4 + 20 C = \(\frac{5x-19}{x-4}\)( x thuộc Z)
Bài 1:
a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\)
\(\Rightarrow\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}.\)
\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\left(đpcm\right).\)
Mình làm được thế thôi nhé.
Chúc bạn học tốt!
CHo a,b,c>0 ,a+b+c=3. Tìm GTNN:
\(P=\frac{2017a^3}{1+b^2}+\frac{2017b^3}{1+c^2}+\frac{2017c^3}{1+a^2}\)
Ta có bđt \(ab^2+bc^2+ca^2\le\frac{1}{3}\left(a+b+c\right)\left(a^2+b^2+c^2\right)=a^2+b^2+c^2\)
\(P=2017\left(\frac{a^3}{1+b^2}+\frac{b^3}{1+c^2}+\frac{c^3}{1+a^2}\right)\)
Ta có: \(\frac{a^3}{1+b^2}+\frac{a\left(1+b^2\right)}{4}\ge2\sqrt{\frac{a^3}{1+b^2}.\frac{a\left(1+b^2\right)}{4}}=a^2\)
Tương tự suy ra \(\frac{a^3}{1+b^2}+\frac{b^3}{1+c^2}+\frac{c^3}{1+a^2}\ge\left(a^2+b^2+c^2\right)-\frac{1}{4}\left(a+b+c\right)-\frac{1}{4}\left(ab^2+bc^2+ca^2\right)\)
\(\ge\left(a^2+b^2+c^2\right)-\frac{3}{4}-\frac{1}{4}\left(a^2+b^2+c^2\right)=\frac{3}{4}\left(a^2+b^2+c^2\right)-\frac{3}{4}\ge\frac{3}{4}.3-\frac{3}{4}=\frac{3}{2}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) . Chứng minh rằng ta co tỉ thức sau :
\(\frac{2018a^{2\:}+2019b^2}{2018b^2-2019b^2}=\frac{2018c^2+2019d^2}{2018c^2-2019d^2}\)
Đặt bằng k nhé các bạn , giúp mình nhanh lên ạ
Nhanh lên ạ
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
\(\Rightarrow\frac{2018a^2}{2018c^2}=\frac{2019b^2}{2019d^2}=\frac{2018a^2+2019b^2}{2018c^2+2019d^2}=\frac{2018a^2-2019b^2}{2018c^2-2019d^2}\)
\(\Rightarrow\frac{2018a^2+2019b^2}{2018a^2-2019b^2}=\frac{2018c^2+2019d^2}{2018c^2-2019d^2}\left(dpcm\right)\)