Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Coin Hunter
Xem chi tiết

a.

\(2^{2024}=2^2.2^{2022}=4.\left(2^3\right)^{674}=4.8^{674}\)

Do \(8\equiv1\left(mod7\right)\Rightarrow8^{674}\equiv1\left(mod7\right)\)

\(\Rightarrow4.8^{674}\equiv4\left(mod7\right)\)

Hay \(2^{2024}\) chia 7 dư 4

b.

\(5^{70}+7^{50}=\left(5^2\right)^{35}+\left(7^2\right)^{25}=25^{35}+49^{25}\)

Do \(\left\{{}\begin{matrix}25\equiv1\left(mod12\right)\\49\equiv1\left(mod12\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}25^{35}\equiv1\left(mod12\right)\\49^{25}\equiv1\left(mod12\right)\end{matrix}\right.\)

\(\Rightarrow25^{35}+49^{25}\equiv2\left(mod12\right)\)

Hay \(5^{70}+7^{50}\) chia 12 dư 2

c.

\(3^{2005}+4^{2005}=\left(3^5\right)^{401}+\left(4^5\right)^{401}=243^{401}+1024^{401}\)

Do \(\left\{{}\begin{matrix}243\equiv1\left(mod11\right)\\1024\equiv1\left(mod11\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}243^{401}\equiv1\left(mod11\right)\\1024^{401}\equiv1\left(mod11\right)\end{matrix}\right.\)

\(\Rightarrow243^{401}+1024^{401}\equiv2\left(mod11\right)\)

Hay \(3^{2005}+4^{2005}\) chia 11 dư 2

d.

\(1044\equiv1\left(mod7\right)\Rightarrow1044^{205}\equiv1\left(mod7\right)\)

Hay \(1044^{205}\) chia 7 dư 1

e.

\(3^{2003}=3^2.3^{2001}=9.\left(3^3\right)^{667}=9.27^{667}\)

Do \(27\equiv1\left(mod13\right)\Rightarrow27^{667}\equiv1\left(mod13\right)\)

\(\Rightarrow9.27^{667}\equiv9\left(mod13\right)\)

hay \(3^{2003}\) chia 13 dư 9

Ga*#lax&y
Xem chi tiết
Bùi Thu Trang
Xem chi tiết
Akai Haruma
31 tháng 12 2023 lúc 14:07

1/

Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.

Số số hạng: $(101-1):4+1=26$

$A=(101+1)\times 26:2=1326$

Akai Haruma
31 tháng 12 2023 lúc 14:09

2/

$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$

$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$

$=(1+2+2^2)(1+2^3+2^6+2^9)$

$=7(1+2^3+2^6+2^9)\vdots 7$

Akai Haruma
31 tháng 12 2023 lúc 14:09

3/
$C=1+2+2^2+2^3+...+2^{99}$

$2C=2+2^2+2^3+2^4+...+2^{100}$

$\Rightarrow 2C-C=2^{100}-1$

$\Rightarrow C=2^{100}-1$

dâu cute
Xem chi tiết
dâu cute
14 tháng 10 2021 lúc 15:18

mong các bn giúp mình gấp ạ ^^

JuliaB
Xem chi tiết
Vũ Phương Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 8 2023 lúc 22:53

2:

a: =>2(x+1)=26

=>x+1=13

=>x=12

b: =>(6x)^3=125

=>6x=5

=>x=5/6(loại)

c: =>\(7\cdot3^x\cdot\dfrac{1}{3}+11\cdot3^x\cdot3=318\)

=>3^x=9

=>x=2

d: -2x+13 chia hết cho x+1

=>-2x-2+15 chia hết cho x+1

=>15 chia hết cho x+1

=>x+1 thuộc {1;3;5;15}

=>x thuộc {0;2;4;14}

e: 4x+11 chia hết cho 3x+2

=>12x+33 chia hết cho 3x+2

=>12x+8+25 chia hết cho 3x+2

=>25 chia hết cho 3x+2

=>3x+2 thuộc {1;-1;5;-5;25;-25}

mà x là số tự nhiên

nên x=1

1: 

a: Đặt A=2^2024-2^2023-...-2^2-2-1

Đặt B=2^2023+2^2022+...+2^2+2+1

=>2B=2^2024+2^2023+...+2^3+2^2+2

=>B=2^2024-1

=>A=2^2024-2^2024+1=1

c: \(=\dfrac{3^{12}\cdot2^{11}+2^{10}\cdot3^{12}\cdot5}{2^2\cdot3\cdot3^{11}\cdot2^{11}}=\dfrac{2^{10}\cdot3^{12}\left(2+5\right)}{2^{13}\cdot3^{12}}\)

\(=\dfrac{7}{2^3}=\dfrac{7}{8}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 10 2017 lúc 9:16

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 9 2018 lúc 7:33

công chúa xinh đẹp nhất...
11 tháng 2 2021 lúc 15:21

xam xi

Khách vãng lai đã xóa
Tạ Thị Bích Huệ
Xem chi tiết
Lê Nhật Quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 10 2023 lúc 20:08

a: \(A=1+2+2^2+...+2^{2023}\)

=>\(2A=2+2^2+2^3+...+2^{2024}\)

=>\(2A-A=2^{2024}+2^{2023}+...+2^2+2-2^{2023}-2^{2022}-...-2^2-2-1\)

=>\(A=2^{2024}-1\)

b: \(A=\left(1+2\right)+2^2+2^3+...+2^{2023}\)

\(=3+2^2\left(1+2\right)+...+2^{2022}\left(1+2\right)\)

\(=3\left(1+2^2+...+2^{2022}\right)⋮3\)