Lời giải:
$A=1+2+2^2+2^3+....+2^{2023}+2^{2024}$
$2A=2+2^2+2^3+2^4+....+2^{2024}+2^{2025}$
$\Rightarrow A=2A-A=2^{2025}-1$
Ta thấy:
$2^6\equiv -1\pmod {13}$
$\Rightarrow 2^{2025}=(2^6)^{337}.2^3\equiv (-1)^{337}.2^3\equiv -8\equiv 5\pmod {13}$
$\Rightarrow A=2^{2025}-1\equiv 5-1\equiv 4\pmod {13}$
Vậy $A$ chia $13$ dư $4$