Bài 5 / đề 2 : Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)với a + b + c khác 0 . Tính giá trị biểu thức :
M=\(\frac{a^3.b^2.c^{1930}}{b^{1935}}\)
AI GIÚP MÌNH, MÌNH TIK CHO
cho \(\frac{a}{b}=\frac{b}{c}=\frac{a}{a}\)và a + b + c \(\ne0\). Tính giá trị của \(M=\frac{a^3.b^2.c^{1930}}{b^{1935}}\)
Vì \(a+b+c\ne0\)\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow a=b=c\)\(\Rightarrow M=\frac{a^3.b^2.c^{1930}}{b^{1935}}=\frac{b^3.b^2.b^{1930}}{b^{1935}}=\frac{b^{3+2+1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\)
Vậy \(M=1\)
Cho \(\frac{a}{b}\)=\(\frac{b}{c}\)=\(\frac{c}{a}\) và a+b+c \(\ne\)0.Tính giá trị của M=\(\frac{a^3.b^2.c^{1930}}{b^{1935}}\)
Ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow a=b=c\)
\(\Rightarrow M=\frac{a^3.b^2.c^{1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\)
Áp dụng tỉ dãy số bằng nhau:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{\left(a+b+c\right)}{b+c+a}=1\Rightarrow a=b=c\)
Khi đó: \(\frac{a^3.b^2.c^{1930}}{b^{1935}}\Leftrightarrow\frac{b^{1935}}{b^{1935}}=b^{1935}:b^{1935}=1\)
theo bài ra và theo tc của dãy tỉ số bằng nhau ta có :a/b=b/c=c/a suy ra a+b+c/b+c+a=1
suy ra a=b=c suy ra a^3*b^2*c^1930=b^1935 suyra b^1935/b^1935=1
Tìm x,y biết
a)\(\frac{4+x}{7+y}=\frac{4}{7}\)và x+y =22
b) Cho \(\frac{x}{3}=\frac{y}{4}\)và \(\frac{y}{5}=\frac{z}{6}\)tính M=\(\frac{2x+3y+4z}{3x+4y+5z}\)
c) Tính giá trị của biểu thức sau , biết x+y-2=0
M=x3+x2y-2x2-xy-y2+3y+x+2006
d) Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)và a+b+c khác 0.tính\(\frac{a^3b^2c^{1930}}{a^{1935}}\)
cho \(\frac{a}{b}\)=\(\frac{c}{d}\)=\(\frac{c}{a}\)và a+b+c\(\ne\).Tính giá trị của M-\(\frac{a^3.b^2.c^{1930}}{b^{1935}}\)
Ta có :\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\Rightarrow\frac{a^3.b^2.c^{1930}}{b^{1935}}=\frac{b^3.b^{1930}}{b^{1933}}=1\)
Bài 1: Cho B = \(x^{2013}-2014x^{2012}+2014x^{2011}-2014x^{2010}+...-2014x^2+2014x-1\)
Tính giá trị của biểu thức B với x=2013.
Bài 2: Cho các số a,b,c khác 0 thỏa mãn: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính giá trị của biểu thức : M=\(\frac{ab+bc+ca}{a^2+b^2+c^2}\)
cho 2014=2013+1 thay vào ta có:\(B=x^{2013}-\left(2013+1\right)x^{2012}+\left(2013+1\right)x^{2011}-...-\left(2013+1\right)x^2+\left(2013+1\right)x-1\)
\(=x^{2013}-\left(x+1\right)x^{2012}+\left(x+1\right)x^{2011}-...-\left(x+1\right)x^2+\left(x+1\right)x-1\)
\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-...-x^3-x^2+x^2+x-1\)
\(=x-1=2013-1=2012\)
Cho biết : \(\frac{a}{b}\)= \(\frac{b}{c}\)= \(\frac{c}{a}\)và a + b + c khác 0
Tính M = \(\frac{a^3.b^2.c^{1930}}{c^{1935}}\)
theo tích chất dãy tỉ số bằng nhau ta có
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)
ta có\(\frac{a^3.b^2.c^{1930}}{c^{1935}}=\frac{c^3.c^2.c^{1930}}{c^{1935}}=\frac{c^{1935}}{c^{1935}}=1\)
Cho biết \(\frac{a}{2}-b=c:\frac{2}{3}\)va a,b,c khác 0 . Tính giá trị biểu thức :
Q=\(2018-\left(\frac{c}{a}-\frac{1}{3}\right)^5.\left(\frac{a}{2}-2\right)^5.\left(\frac{3}{2}+\frac{b}{c}\right)^5\)
cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\left(a+b+c\ne0\right)\)
tính M = \(\frac{a^3.b^2.c^{1930}}{b^{1935}}\)
áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
ta có : \(\frac{a}{b}=1\Rightarrow a=b\) 1
\(\frac{b}{c}=1\Rightarrow b=c\) 2
\(\frac{c}{a}=1\Rightarrow c=a\) 3
từ 1 2 3 \(\Rightarrow\) a=b=c
\(\Rightarrow\)M=\(\frac{a^3.b^2.c^{1930}}{b^{1935}}=\frac{b^3.b^2.b^{1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\)
Đề bài :
Cho a;;b;c là các số hữu tỉ khác 0 sao cho :
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
Tính giá trị bằng số của một biểu thức:
\(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{c+b+a}=\frac{a+b+c}{a+b+c}=1\)
=> \(\frac{a+b-c}{c}=1\Rightarrow a+b=2c\)
\(\frac{a-b+c}{b}=1\Rightarrow a+c=2b\)
\(\frac{-a+b+c}{a}=1\Rightarrow b+c=2a\)
Vậy \(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2b.2a}{abc}=\frac{8abc}{abc}=8\)