Giải Phương Trình :
\(\sqrt{\frac{42}{5-x}}\)+\(\sqrt{\frac{60}{7-x}}\)=6
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Giai phương trình \(\sqrt{\frac{42}{5-x}}+\sqrt{\frac{60}{7-x}}=6\)
\(\sqrt{\frac{42}{5-x}}+\sqrt{\frac{60}{7-x}}=6\)
\(\Leftrightarrow\sqrt{\frac{42}{5-x}}-\sqrt{\frac{126}{14}}+\sqrt{\frac{60}{7-x}}-\sqrt{\frac{45}{5}}=0\)
\(\Leftrightarrow\frac{\frac{42}{5-x}-\frac{126}{14}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{60}{7-x}-\frac{45}{5}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}=0\)
\(\Leftrightarrow\frac{\frac{-3\left(3x-1\right)}{x-5}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{-3\left(3x-1\right)}{x-7}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}=0\)
\(\Leftrightarrow-3\left(3x-1\right)\left(\frac{\frac{1}{x-5}}{\sqrt{\frac{42}{x-5}}+\sqrt{\frac{126}{14}}}+\frac{\frac{1}{x-7}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}\right)=0\)
Dễ thấy : \(\frac{\frac{1}{x-5}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{1}{x-7}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}>0\)
\(\Rightarrow3x-1=0\Rightarrow x=\frac{1}{3}\)
Chúc bạn học tốt !!!
Gỉai phương trình :
\(\sqrt{\frac{42}{5-x}}+\sqrt{\frac{60}{7-x}}=6\)
Giải phương trình
\(\sqrt{\frac{42}{5-x}}+\sqrt{\frac{60}{7-x}}=6\)
copy mà ko hiểu thì copy làm gì
#Lần sau copy nhớ ghi nguồn nếu tôn trọng công sức người khác
\(\sqrt{\frac{42}{5-x}}+\sqrt{\frac{60}{7-x}}=6\)
\(\Leftrightarrow\sqrt{\frac{42}{5-x}}-\sqrt{\frac{126}{14}}+\sqrt{\frac{60}{7-x}}-\sqrt{\frac{45}{5}}=0\)
\(\Leftrightarrow\frac{\frac{42}{5-x}-\frac{126}{14}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{60}{7-x}-\frac{45}{5}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}=0\)
\(\Leftrightarrow\frac{\frac{-3\left(3x-1\right)}{x-5}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{-3\left(3x-1\right)}{x-7}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}=0\)
\(\Leftrightarrow-3\left(3x-1\right)\left(\frac{\frac{1}{x-5}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{1}{x-7}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}\right)=0\)
Thấy: \(\frac{\frac{1}{x-5}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{1}{x-7}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}>0\)
\(\Rightarrow3x-1=0\Rightarrow x=\frac{1}{3}\)
ĐK: \(x< 5\)
Nhận xét: \(x=\frac{1}{3}\) nghiệm của phương trình
\(\frac{42}{5-x}\) đồng biến với x. x tăng thì 5-x giảm -> \(\frac{42}{5-x}\) tăng
\(\Rightarrow\sqrt{\frac{42}{5-x}}\) đồng biến với x
\(\Leftrightarrow\sqrt{\frac{60}{7-x}}\) đồng biến với x
VT đồng biến với x, VP là hằng số. Nếu Phương Trình nghiệm thì nghiệm duy nhất là:
\(\Rightarrow\)Phương Trình có nghiệm là \(\frac{1}{3}\)
Giai các phương trình
1)\(\frac{2+\sqrt{x}}{\sqrt{2}+\sqrt{2+\sqrt{x}}}+\frac{2-\sqrt{x}}{\sqrt{2}-\sqrt{2-\sqrt{x}}}=\sqrt{2}\)
2)\(\frac{\sqrt[3]{7-x}-\sqrt[3]{x-5}}{\sqrt[3]{7-x}+\sqrt[3]{x+5}}=6-x\)
1.
đặt \(a=\sqrt{2+\sqrt{x}}\),\(b=\sqrt{2-\sqrt{x}}\)\(\left(a,b>0\right)\)
có \(a^2+b^2=4\)
pt thành \(\frac{a^2}{\sqrt{2}+a}+\frac{b^2}{\sqrt{2}-b}=\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}\left(a^2+b^2\right)-ab\left(a-b\right)=\sqrt{2}\left(\sqrt{2}+a\right)\left(\sqrt{2}-b\right)\)
\(\Leftrightarrow2\sqrt{2}+\sqrt{2}ab-ab\left(a-b\right)-2\left(a-b\right)=0\)
\(\Leftrightarrow\left(ab+2\right)\left(\sqrt{2}-a+b\right)=0\)
vì a,b>o nên \(a-b=\sqrt{2}\)
\(\Rightarrow\sqrt{2+\sqrt{x}}-\sqrt{2-\sqrt{x}}=\sqrt{2}\)
Bình phương 2 vế:
\(4-2\sqrt{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=2\)
\(\Leftrightarrow\sqrt{4-x}=1\)
\(\Rightarrow x=3\)
Nếu đúng thì tích giùm mình cái nha!!!!!!!!!!!
2.ĐKXĐ D=R
Đặt \(a=\sqrt[3]{7-x},b=\sqrt[3]{x-5}\)
ta có: \(\hept{\begin{cases}a^3+b^3=2\\a^3-b^3=12-2x=2\left(6-x\right)\end{cases}}\)
Vậy ta có:
\(\frac{a-b}{a+b}=\frac{a^3-b^3}{2}\Leftrightarrow\left(a-b\right)\left(2-\left(a+b\right)\left(a^2+ab+b^2\right)\right)=0\)
Th1: \(a-b=0\Leftrightarrow\sqrt[3]{7-x}=\sqrt[3]{x-5}\Leftrightarrow x=6\)
Th2: \(\hept{\begin{cases}\left(a+b\right)\left(a^2+ab+b^2\right)=2\\a^3+b^3=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(a+b\right)\left(a^2+ab+b^2\right)=2\\\left(a+b\right)\left(a^2-ab+b^2\right)12\end{cases}}\)
Từ đó suy ra:
\(\frac{a^2-ab+b^2}{a^2+ab+b^2}=6\Leftrightarrow5a^2-7ab+6b^2=0\)
nếu \(b=0\Leftrightarrow\sqrt[3]{x-5}=0\Leftrightarrow x=5\)thay vào phương trình ta thấy không thỏa mãn.
nếu \(b\ne0\Rightarrow5a^2-7ab+5b^2=0\Leftrightarrow5\left(\frac{a}{b}\right)^2-7\frac{a}{b}+5=0\)(1)
phương trình (1) vô nghiệm với ẩn \(\frac{a}{b}\). nên trường hợp này không xảy ra.
vậy phương trình có duy nhất nghiệm x = 6.
\(\sqrt{\frac{42}{5-x}}+\sqrt{\frac{60}{7-x}}=6\)
\(\sqrt{\frac{42}{5-x}}+\sqrt{\frac{60}{7-x}}=6\)
Nhận xét : \(x=\frac{1}{3}\) là 1 nghiệm của phương trình
\(\sqrt{\frac{42}{5-x}}\) đồng biến với " x tăng thì 5 - c giảm -> \(\sqrt{\frac{42}{5-x}}\) tăng
Tương đương \(\Rightarrow\sqrt{\frac{60}{7-x}}\) đồng biến với x
VT đồng biến với x, VP là hằng số. Nếu phương trình có nghiệm thì kết quả duy nhất là : \(\frac{1}{3}\)
Vậy kết quả của Phương trình có nghiệm là \(\frac{1}{3}\)
P/s: Em ko chắc đâu ạ. Mới lớp 6 thui :v
\(x=\frac{1}{3}\) có thể ghi tất cả phép tính ra và thay dấu = thành dấu - trên may tinh casio rồi nhấn shift tiếp theo nhấn calc rồi chọn số bất kì rồi nhấn bằng đợi một lát rồi nhấn asn rồi nhấn =
ae gải hộ mk cái: giải phương trình
1: \(\sqrt{2x^2+x+6}+\sqrt{x^2+x+2}=\frac{x^2+4}{x}\)
2: \(\sqrt{x+3}-\sqrt{1-x}=1+x\)
3: \(\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-1\)
4:\(\sqrt{x^2-x+1}-\sqrt{x^2+x+1}=2x\)
5:\(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}\)
6:\(\sqrt{\frac{42}{5-x}}+\sqrt{\frac{60}{7-x}}=6\)
7:\(\sqrt{x+\frac{3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\)
mọi người jup mình giải đi khó wá
1 bài thui cx đc
Giải các phương trình vô tỉ sau: (chú ý làm theo pp nhân lượng liên hơp)
a) \(3\left(2+\sqrt{x-2}\right)=2x+\sqrt{x+6}\)
b) \(\sqrt{\frac{42}{5-x}}+\sqrt{\frac{60}{7-x}}=6\)
c) \(\sqrt{x+1}+\sqrt{1-x}=2-\frac{x^2}{4}\)
d) \(4\left(x+1\right)^2=\left(2x+10\right)\left(1-\sqrt{2x+3}\right)^2\)
Giải phương trình:
1. \(\sqrt{\dfrac{42}{5-x}}+\sqrt{\dfrac{60}{7-x}}=6\)
2. \(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
3. \(x^2+x+12\sqrt{x+1}=36\)
4. \(\sqrt{x+2}-\sqrt{x-6}=2\)
5. \(\sqrt[3]{x-1}-\sqrt[3]{x-3}=\sqrt[3]{2}\)
6. \(5\sqrt{1+x^3}=2\left(x^2+2\right)\)
6. \(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\)
1.
ĐKXĐ: \(x< 5\)
\(\Leftrightarrow\sqrt{\dfrac{42}{5-x}}-3+\sqrt{\dfrac{60}{7-x}}-3=0\)
\(\Leftrightarrow\dfrac{\dfrac{42}{5-x}-9}{\sqrt{\dfrac{42}{5-x}}+3}+\dfrac{\dfrac{60}{7-x}-9}{\sqrt{\dfrac{60}{7-x}}+3}=0\)
\(\Leftrightarrow\dfrac{9x-3}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{9x-3}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}=0\)
\(\Leftrightarrow\left(9x-3\right)\left(\dfrac{1}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{1}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}\right)=0\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
b.
ĐKXĐ: \(x\ge2\)
\(\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow x=2\)
3.
ĐKXĐ: \(x\ge-1\)
\(x^2+x-12+12\left(\sqrt{x+1}-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+4\right)+\dfrac{12\left(x-3\right)}{\sqrt{x+1}+2}=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+4+\dfrac{12}{\sqrt{x+1}+2}\right)=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)