chứng tỏ rằng B=aaabbb chia hết cho 37
a,Chứng tỏ rằng ab(a+b) chia hết cho 2 (a;b thuộc N)
b,Chứng minh rằng ab + ba chia hết cho 11
c,Chưnhs minh aaa luôn chia hết cho 37
d, Chứng minh aaabbb luôn chia hết cho 7
b) ab+ba
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b+10b+a
= 11a + 11b
Ta thấy: 11a⋮11 ; 11b⋮11
=>ab+ba⋮11 (ĐPCM)
a, chứng tỏ ab(a+ b) chia hết cho 2
b, chứng tỏ ab+ ba chia hết cho 11
c , chứng tỏ aaa chia hết cho 37
d , chứng tot aaabbb chia hết cho 37
e, ab- ba chia hết cho 9 với a> b
Cho a,b là các chữ số khác 0.Hãy chứng tỏ rằng:
a. abba chia hết cho 11 b.ababab chia hết cho 7 aaabbb chia hết cho 37 d.abab-baba chia hết cho 9 và 101
Câu a, b em xem trong mục câu hỏi tương tự nhé!
c) \(\overline{aaabbb}=\overline{aaa}.1000+\overline{bbb}=a.111.1000+b.111=\left(a.1000+b\right).111⋮37\)
vì 111=37.3 chia hết cho 37
d)
\(\overline{abab}-\overline{baba}=a.1000+b.100+a.10+b-b.1000-a.100-b.10-a=a.909-b.909\)
=909. (a-b)=9.101.(a-b) chia hết cho 9 và 101
a) abba chia hết cho 11
Ta có abba = 1000a + 100b + 10 b + a
= (1000a + a) + (100b +10b)
= 1001a + 110b
= 11.91.a + 11.10.b
= 11.(91a + 10b) \(⋮\)11
b) ababab \(⋮\)7
=> ababab = 100 000a + 10 000b + 1000a + 100b + 10a + b
= (100 000a + 1000a + 10a) + (10 000b + 100b + b)
= 101010a + 10101b
= 7.14430a + 7. 1443b
= 7.(14430a + 1443b) \(⋮\)7
c) aaabbb \(⋮\)37
Ta có : aaabbb = aaa000 + bbb
= 100000a + 10000a + 1000a + 100b + 10b + b
= (100000a + 10000a + 1000a) + (100b + 10b + b)
= 111000a + 111b
= 37. 30000a + 37.3b
= 37.(30000a + 3b)
d) abab - baba \(⋮\)9 và 101
Ta có :abab - baba \(⋮\)9 và 101 <=> abab - baba \(⋮\)9.101 <=> abab - baba \(⋮\)909
Lại có: abab - baba = (1000a + 100b + 10a + b) - (1000b + 100a + 10b + a)
= 1000a + 100b + 10a + b - 1000b - 100a - 10b - a
= (1000a + 10a - 100a - a ) + (100b + b - 1000b - 10b)
= a(1000 + 10 - 100 - 1) + b(100 + 1 - 1000 - 10
= a. 909 + b. (-909)
Vì \(\hept{\begin{cases}a.909⋮909\\b.\left(-909\right)⋮909\end{cases}}\)
=> \(a.909+b.\left(-909\right)⋮909\)
=> \(a.909+b.\left(-909\right)⋮101\times9\)
=> \(\hept{\begin{cases}a.909+b.\left(-909\right)⋮9\\a.909+b.\left(-909\right)⋮11\end{cases}}\)
a) tổng 10615+8 có chia hết cho 2 và 9 không
b)tổng 10^2010+14 có chia hết cho3 và 2 không
c)hiệu 10^2010-4 có chia hết cho 3 không
d)chứng minh rằng aaa luôn chia hết cho 37
e)chứng minh aaabbb luôn chia hết cho 37
f)chứng tỏ rằng ab(a+b)chia hết cho 2(a;b thuộc N)
m)chứng minh ab+ba luôn chia hết cho 11
n)chứng minh ab-ba luôn chia hết cho 9 với a>b
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
b, B = 102010 + 14
Xét tổng các chữ có trong B là : 1 + 0 x 2010 + 4 = 6 ⋮ 3 ⇒ B ⋮ 3
B = 102010 + 14 = \(\overline{..0}\) + 4 = \(\overline{..4}\) ⋮ 2 vậy B ⋮ 2
Chứng tỏ
a , ab( a+b) chia hết cho 2
b , ab+ ba chia hết cho 11
C, aaa chia hết cho 37
d , aaabbb chia hết cho 37
e , ab-ba chia hết cho 9 với a>b
Bài tập:
a) Chứng tỏ rằng ab(a+b) chia hết cho 2 (a,b thuộc N)
b) Chứng minh rằng ab+ba chia hết cho 11(ko phải a nhân b, b nhân a nhé)
c) Chứng minh aaa (ko phải a.a.a nhé) luôn chia hết cho 37
d) Chứng minh aaabbb(ko phải a.a.a.b.b.b nhe) luôn chia hết cho 37
e) Chứng minh ab-ba chia hết cho 9 với a>b (ko phải a.b-b.a nhé)
Chứng minh rằng:
a, ababab chia hét cho 7
b, aaabbb chia hết cho 37
ababab = ab.101010=ab.7.14430 chia hết cho 7 (trong tích có 1 thừa số chia hết cho 7)
=> ababab chia hết cho 7(đpcm)
chứng minh rằng
a) abba chia hết cho 11
b) aaabbb chia hết cho 37
a,
abba=a1000+b100+b10+a1
=a(1000+1)+b(10+100)
=a.1001+b.110
=a.(11.91)+(11.10) chia hết cho 11
a,abba= 1000a + 100b + 10b+a = 1001a + 110b = 11.(91a+10b)
=> abba chia hết cho 11
b, aaabbb=111 x a x 1000+111 x b=37 x (3 x a x 1000) + 37 x (3 x b)
=> aaabbb chia hết cho 37
----------------------------------------
chung minh ab-ba chia het cho 9 voi dieu kien a>b
Chứng tỏ: aaabbb luôn chia hết cho 37
aaabbb : 7
=a.100000+a.10000+a.1000+b.100+b.10+b.1(cũng bằng b thôi)
=a.(100000+10000+1000)+b.(100+10+1)
=a.111000+b.111
=111111ab
=111111:7 thì aaabbb sẽ chi hết cho 7 thôi
aaabbb=aaa000+bbb=111(1000a+b)=37,3(100a+b) chia hết cho 37
tick mlk nha
câu hỏi tương tự
TICK MIK NHA BẠN THẢO DỄ THƯƠNG