Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen pokiwar bin
Xem chi tiết
thùy linh
Xem chi tiết
thùy linh
6 tháng 1 2023 lúc 19:10

k,\(\dfrac{x}{3}-\dfrac{2x+1}{2}=\dfrac{x}{6}-x\)

giúp mk câu k nhé đề bài như trên

Nguyễn Lê Phước Thịnh
7 tháng 1 2023 lúc 7:43

b: \(\Leftrightarrow4x+8-9=4x-4\)

=>-1=-4(loại)

d: \(\Leftrightarrow3\left(x-2\right)+2\left(x+1\right)=8x\)

=>8x=3x-6+2x+2=5x-4

=>3x=-4

=>x=-4/3

f: \(\Leftrightarrow3\left(x+2\right)+4\left(2x-3\right)=2\left(x-12\right)\)

=>3x+6+8x-12=2x-24

=>11x-6=2x-24

=>9x=-18

=>x=-2

to tien cuong
Xem chi tiết
Huy Hoàng
8 tháng 7 2018 lúc 13:08

1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)

ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)

<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)

<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)

<=> \(\frac{3x+10}{x^2+2x-3}=0\)

<=> \(3x+10=0\)

<=> \(x=-\frac{10}{3}\)

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
17 tháng 9 2023 lúc 15:43

a) \(({x^2} + 2x + 3) + (3{x^2} - 5x + 1) = ({x^2} + 3{x^2}) + (2x - 5x) + (3 + 1) = 4{x^2} - 3x + 4\);        

b) \(\begin{array}{l}(4{x^3} - 2{x^2} - 6) - ({x^3} - 7{x^2} + x - 5) = 4{x^3} - 2{x^2} - 6 - {x^3} + 7{x^2} - x + 5\\ = (4{x^3} - {x^3}) + ( - 2{x^2} + 7{x^2}) - x + ( - 6 + 5) = 3{x^3} + 5{x^2} - x - 1\end{array}\);

c) \(\begin{array}{l} - 3{x^2}(6{x^2} - 8x + 1) =  - 3{x^2}.6{x^2} -  - 3{x^2}.8x +  - 3{x^2}.1\\ =  - 18{x^{2 + 2}} + 24{x^{2 + 1}} - 3{x^2} =  - 18{x^4} + 24{x^3} - 3{x^2}\end{array}\);               

d) \(\begin{array}{l}(4{x^2} + 2x + 1)(2x - 1) = (4{x^2} + 2x + 1).2x - (4{x^2} + 2x + 1).1 = 4{x^2}.2x + 2x.2x + 1.2x - 4{x^2} - 2x - 1\\ = 8{x^{2 + 1}} + 4{x^{1 + 1}} + 2x - 4{x^2} - 2x - 1 = 8{x^3} + 4{x^2} + 2x - 4{x^2} - 2x - 1 = 8{x^3} - 1\end{array}\);

e) \(\begin{array}{l}({x^6} - 2{x^4} + {x^2}):( - 2{x^2}) = {x^6}:( - 2{x^2}) - 2{x^4}:( - 2{x^2}) + {x^2}:( - 2{x^2})\\ =  - \dfrac{1}{2}{x^{6 - 2}} + {x^{4 - 2}} - \dfrac{1}{2}{x^{2 - 2}} =  - \dfrac{1}{2}{x^4} + {x^2} - \dfrac{1}{2}.\end{array}\);  

g) 

 \(({x^5} - {x^4} - 2{x^3}):({x^2} + x)=x^3-2x^2\)

Tiến Đạt
Xem chi tiết

(x^2+x+1)>0

->6-2x=0

->x=3

Khách vãng lai đã xóa
Trần Thu Hà
6 tháng 5 2020 lúc 22:09
a, (x²+x+1)(6−2x)=0
⇔2(x²+x+1)(3−x)=0
⇔3−x=0
⇔x=3

b, (8x−4)(x²+2x+2)=0
⇔4(2x−1)(x²+2x+2)=0
⇔2x−1=0
⇔x=12HOk tốt
Khách vãng lai đã xóa
PHẠM PHƯƠNG DUYÊN
6 tháng 5 2020 lúc 22:34

1) Ta có: x2 + x + 1 = x2 + 2.x.1/2 + 1/4 + 3/4 = (x + 1/2)2+3/4 > 0 với mọi x

=> 6 - 2x = 0

=> -2x = -6

=> x = 3

2) Ta có: x2 + 2x + 2 = x2 + 2x.1 + 1 + 1 = (x + 1)2 + 1 > 0 với mọi x

=> 8x - 4 = 0

=> 8x = 4

=> x = 1/2

Khách vãng lai đã xóa
Vo Anh Thu
Xem chi tiết
Phạm Anh Quân
14 tháng 4 2018 lúc 15:53

a)5(x-6)=4(3 -2x)

   5x-30=12-8x

  5x -8x=30+12

       -3x=42

          x=42 : (-3)

          x=-14

❊ Linh ♁ Cute ღ
27 tháng 5 2018 lúc 11:53

a) 2x(x - 3) + 5(x - 3) = 0 ⇔ (x - 3)(2x + 5) = 0 ⇔ x - 3 = 0 hoặc 2x + 5 = 0

1) x - 3 = 0 ⇔ x = 3

2) 2x + 5 = 0 ⇔ 2x = -5 ⇔ x = -2,5

Vậy tập nghiệm của phương trình là S = {3;-2,5}

b) (x2 - 4) + (x - 2)(3 - 2x) = 0 ⇔ (x - 2)(x + 2) + (x - 2)(3 - 2x) = 0

⇔ (x - 2)(x + 2 + 3 - 2x) = 0 ⇔ (x - 2)(-x + 5) = 0 ⇔ x - 2 = 0 hoặc -x + 5 = 0

1) x - 2 = 0 ⇔ x = 2

2) -x + 5 = 0 ⇔ x = 5

Vậy tập nghiệm của phương trình là S = {2;5}

c) x3 – 3x2 + 3x – 1 = 0 ⇔ (x – 1)3 = 0 ⇔ x = 1.

Vậy tập nghiệm của phương trình là x = 1

d) x(2x - 7) - 4x + 14 = 0 ⇔ x(2x - 7) - 2(2x - 7) = 0

                                     ⇔ (x - 2)(2x - 7) = 0 ⇔ x - 2 = 0 hoặc 2x - 7 = 0

1) x - 2 = 0 ⇔ x = 2

2) 2x - 7 = 0 ⇔ 2x = 7 ⇔ x = 72

Vậy tập nghiệm của phương trình là S = {2;72}

e) (2x – 5)2 – (x + 2)2 = 0 ⇔ (2x - 5 - x - 2)(2x - 5 + x + 2) = 0

⇔ (x - 7)(3x - 3) = 0 ⇔ x - 7 = 0 hoặc 3x - 3 = 0

1) x - 7 = 0 ⇔ x = 7

2) 3x - 3 = 0 ⇔ 3x = 3 ⇔ x = 1

Vậy tập nghiệm phương trình là: S= { 7; 1}

f) x2 – x – (3x - 3) = 0 ⇔ x2 – x – 3x + 3 = 0 

⇔ x(x - 1) - 3(x - 1) = 0 ⇔ (x - 3)(x - 1) = 0 

⇔ x = 3 hoặc x = 1

Vậy tập nghiệm của phương trình là S = {1;3}

okazaki * Nightcore - Cứ...
23 tháng 2 2020 lúc 18:07

trả lời

-14

hok tốt

Khách vãng lai đã xóa
trần thị phương lan
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 2 2020 lúc 19:49

Bài 2:

a) Thay x=-2 vào phương trình 2x+k=x-1, ta được

2*(-2)+k=-2-1

⇔-4+k=-3

⇔k=-3-(-4)=-3+4=1

Vậy: Khi k=1 thì phương trình 2x+k=x-1 có nghiệm là x=-2

b) Thay x=2 vào phương trình (2x+1)(9x+2k)-5(x+2)=40, ta được

(2*2+1)*(9*2+2k)-5*(2+2)=40

⇔5*(18+2k)-20=40

⇔5*(18+2k)=40+20

⇔18+2k=12

⇔2k=12-18=-6

⇔k=-3

Vậy: khi k=-3 thì phương trình (2x+1)(9x+2k)-5(x+2)=40 có nghiệm là x=2

c) Thay x=1 vào phương trình 2(2x+1)+18=3(x+2)(2x+k), ta được

2*(2*1+1)+18=3*(1+2)*(2*1+k)

⇔2*3+18=3*3*(2+k)

⇔24=9*(2+k)

\(2+k=\frac{24}{9}=\frac{8}{3}\)

\(\Leftrightarrow k=\frac{8}{3}-2=\frac{2}{3}\)

Vậy: khi \(k=\frac{2}{3}\) thì phương trình 2(2x+1)+18=3(x+2)(2x+k) có nghiệm là x=1

Khách vãng lai đã xóa
Thơ Nụ =))
Xem chi tiết
Trần Anh Khoa
30 tháng 1 2024 lúc 22:58

Ta có : \(x^2-2x-1=0 \)
\(\Leftrightarrow \)\((x-1)^2=2\)
\(\Leftrightarrow \)\(\left[\begin{array}{} x-1=\sqrt{2}\\ x-1=-\sqrt{2} \end{array} \right.\)
Đặt P = \(\dfrac{x^6-6x^5+12x^4-8x^3+2015}{x^6-8x^3-12x^2+6x+2015}\)
          =\(\dfrac{(x^6-2x^5-x^4)-(4x^5-8x^4-4x^3)+(5x^4-10x^3-5x^2)-(2x^3-4x^2-2x)+(x^2-2x-1)+2016} {(x^6-2x^5-x^4)+(2x^5-4x^4-2x^3)+(5x^4-10x^3-5x^2)+(4x^3-8x^2-4x)+(x^2-2x-1)+12x+2016}\)
         =\(\dfrac{x^4(x^2-2x-1)-4x^3(x^2-2x-1)+5x^2(x^2-2x-1)-2x(x^2-2x-1)+(x^2-2x-1)+2016} {x^4(x^2-2x-1)+2x^3(x^2-2x-1)+5x^2(x^2-2x-1)+4x(x^2-2x-1)+(x^2-2x-1)+12x+2016}\)
         =\(\dfrac{2016}{12x + 2016}\)
         =\(\dfrac{2016}{12(x+1)+2004}\)
         =\(\dfrac{168}{x+1+167}\)
         =\(\left[\begin{array}{} \dfrac{168}{\sqrt{2}+167}\\ \dfrac{168}{-\sqrt{2}+167} \end{array} \right.\)
Chú thích: Hình như mẫu là \(-6x\) chứ không phải \(6x \) bạn ạ. Hay là mình phân tích sai thì cho mình xin lỗi nhé.

Quỳnh Hoa Lenka
Xem chi tiết
ngonhuminh
9 tháng 2 2017 lúc 23:02

b) đặt x^2+2x+2=t => t>0

\(\frac{t-1}{t}+\frac{t}{t+1}=\frac{7}{6}\Leftrightarrow\frac{2t^2-1}{t^2+t}=\frac{7}{6}\Leftrightarrow12t^2-6=7t^2+7t\)

\(\Leftrightarrow5t^2-7t-6=0\Leftrightarrow5t\left(t-2\right)+3t-6=\left(t-2\right)\left(5t+3\right)\Rightarrow\left[\begin{matrix}t=2\\t=\frac{-3}{5}\left(loai\right)\end{matrix}\right.\)

với t=2

\(x^2+2x+2=2\Rightarrow x^2+2x=0\Rightarrow\left[\begin{matrix}x=0\\x=-2\end{matrix}\right.\)