tìm 2 số tự nhiên x và y biết xy + 5y + 5x = 92
Tìm hai số tự nhiên x và y, biết rằng xy + 5y + 5x = 92
xy + 5y + 5x = 92
xy + 5y + 5x + 5 . 5 - 25 = 92
y ( x + 5 ) + 5 ( x + 5 ) - 25 = 92
( x + 5 ) . ( y + 5 ) = 92 + 25 = 117
=> x + 5 , y + 5 € Ư (117 )
/Tự làm/
#Tề _ Thiên
xy + 5y + 5x = 92 \(\Rightarrow\)( x + 5 )( y + 2 ) = 102
Nên x + 5 , y + 2 là ước của 120. Mà 102 = 2.3.17
Do đó :
x + 5 | 1 | 2 | 3 | 6 | 17 | 34 | 51 | 102 |
y + 2 | 102 | 51 | 34 | 17 | 6 | 3 | 2 | 1 |
Vậy ( với x\(\ge\)5 ; y\(\ge\)2 )
x | 6 | 17 | 34 | 51 |
y | 17 | 6 | 3 | 2 |
\(xy+5y+5x=92\)
\(\Leftrightarrow y\left(x+5\right)+5x=92\)
\(\Leftrightarrow y\left(x+5\right)+5x+25=92+25\)
\(\Leftrightarrow y\left(x+5\right)+5x+5.5=117\)
\(\Leftrightarrow y\left(5+x\right)+5\left(x+5\right)=117\)
\(\Leftrightarrow\left(y+5\right)\left(x+5\right)=117\)
\(\Leftrightarrow y+5,x+5\in U\left(117\right)=\left\{\pm1;\pm117\right\}\)
Tự lập bảng làm tiếp ....
tìm các cặp số tự nhiên x, y biết:
xy+5x+5y=92xy+5x-2y=105xy-3x+2y-11=0xy-2x+y-4=0xy-x+2y-2=42xy+2x+3y=12nhanh minh tick
1. xy + 5x + 5y = 92
=> (xy + 5x) + (5y + 25) = 92 + 25
=> x(y + 5) + 5(y + 5) = 117
=> (x + 5)(y + 5) = 117
=> x + 5 \(\in\)Ư(117) = {-1;1;-3;3;-9;9;-13;13;-39;39;-117;117}
Mà x >= 0 => x + 5 >= 5
=> x + 5 \(\in\){9;13;39;117}
Ta có bảng sau:
x + 5 | 9 | 13 | 39 | 117 |
x | 4 | 8 | 34 | 112 |
y + 5 | 13 | 9 | 3 | 1 |
y | 8 | 4 | -2 (loại) | -4 (loại) |
Vậy; (x;y) \(\in\){(4;8);(8;4)}
các câu còn lại tương tự như bài mình vừa làm
tìm các cặp số tự nhiên xy
a, xy = 5x + 5y "
b, xy = 6 ( x + y )
c, xy + 2x = y + 11
a/
\(xy-5x=5y\Rightarrow x\left(y-5\right)=5y\Rightarrow x=\frac{5y}{y-5}\)với \(y\ne5\)
\(x=\frac{5y-25+25}{y-5}=\frac{5\left(y-5\right)+25}{y-5}=5+\frac{25}{y-5}\)
Do x là số nguyên nên \(\frac{25}{y-5}\)phải là số nguyên hay y-5 phải là ước của 25
=> \(y-5\in\left\{-25;-5;-1;1;5;25\right\}\)\(\Rightarrow y\in\left\{-20;0;4;6;10;30\right\}\)
Thế y vào tìm x
Các câu còn lại làm tương tự
a/ xy=5x+5y
<=> xy-5x=5y <=> x(y-5)=5y => \(x=\frac{5y}{y-5}=\frac{5y-25+25}{y-5}=\frac{5\left(y-5\right)}{y-5}+\frac{25}{y-5}=5+\frac{25}{y-5}.\)
Như vậy, để x là số tự nhiên thì 25 phải chia hết cho (y-5)
=> \(\hept{\begin{cases}y-5=1\\y-5=5\\y-5=25\end{cases}=>\hept{\begin{cases}y=6;x=30\\y=10;x=10\\y=30;x=6\end{cases}}}\)
.
Các câu khác làm tương tự
xy=5x+5y
<=> xy-5x-5y=0
<=> x(y-5)-5y+25=25
<=> (x-5)(y-5)=25=-1.-25=-25.-1=1.25.25.1
+) (x-5)(y-5)=-1.-25=> x=4,y=-20
+) (x-5)(y-5)=-25.-1=> x=-20,y=4
+) (x-5)(y-5)=1.25=>x=6,y=30
+) (x-5)(y-5)=25.1=>x=30,y=6
Vậy có 4 cặp (x,y) E {(4;-20),(-20;4),(6;30),(30;6)}
Bài 1: Tìm các số tự nhiên x; y sao cho 2xy - 5x + 7y - 4 = 0.
Bài 2: Tìm các số tự nhiên x; y sao cho 2xy + x = 5y.
Tìm số tự nhiên x,y sao cho
5x+5y=5086
Tìm các số tự nhiên x,y thõa mản :
a) xy+4x=35+5y
b) (2^/x/)+(y^2)+y=2x+1
a) xy + 4x = 35 + 5y
=> xy + 4x - 5y = 35
=> x(y + 4) - 5(y + 4) = 15
=> (x - 5)(y + 4) = 15
=> x - 5;y + 4 \(\in\)Ư(15) = {1; 3; 5; 15}
Lập bảng :
x - 5 | 1 | 3 | 5 | 15 |
y + 4 | 15 | 5 | 3 | 1 |
x | 6 | 8 | 10 | 20 |
y | 11 | 1 | -1(loại) | -3(loại) |
Vậy ...
b) 2|x| + y2 + y = 2x + 1
Ta có: 2x + 1 là số lẻ => 2|x| + y2 + y là số lẻ
Mà y2 + y = y(y + 1) là số chẵn => 2|x| là số lẻ
<=> 2|x| = 1 <=> 2|x| = 20 <=> |x| = 0 <=> x = 0
Với x = 0 => 20 + y2 + y = 2.0 + 1
=> 1 + y2 + y = 1
=> y(y + 1) = 0
=> \(\orbr{\begin{cases}y=0\\y+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}y=0\\y=-1\end{cases}}\)
Do x; y \(\in\)N => x = y = 0 (tm)
Tìm x,y nguyên biết: x2 - xy - 5x - 5y + 2 = 0
Tìm x, y tự nhiên sao cho:
a) 3x+xy+y=2
b)xy-5y+x=9
Tìm cặp số nguyên x, y thỏa mãn:
a) x=6y và lxl-lyl=60 b) lxl+lyl<2 c) (x+1)^2+(y+1)^2+(x-y)^2=2
d) xy+5x-7y=35 e) xy+2x-3y=9 f) xy-2x+5y-12=0
ᓚᘏᗢ