Tìm GTNN của A=\(\frac{x^2-2x+2014}{x^2}\)
giải giùm!
Tìm GTNN của \(A=\frac{x^2-2x+2014}{x^2}\)
\(A=\frac{x^2-2x+2014}{x^2}\)
Ta có :
\(\frac{x^2-2x+2014}{x^2}-\frac{2013}{2014}=\frac{2014x^2-2.2014.x+2014^2-2013x^2}{2014x^2}=\frac{x^2-2.2004.x+2014^2}{2014x^2}=\frac{\left(x-2014\right)^2}{2014x^2}\ge\frac{2013}{2014}\)
\(\Rightarrow A\ge\frac{2013}{2014}\)
Dấu " = " xảy ra khi và chỉ khi \(x=2014\)
Vậy \(Min_A=\frac{2013}{2014}\Leftrightarrow x=2014\)
tìm GTNN của \(A=\frac{x^2-2x+2014}{x^2}\) với x khác 0
\(A=1-\frac{2}{x}+\frac{2014}{x^2}\)
đặt 1/x=t ta có
\(A=1-2t+2014t^2\)
\(=2014\left(t^2-\frac{1}{1007}+\frac{1}{2014}\right)\)
=\(2014[\left(t-\frac{1}{2014}\right)^2-\left(\frac{1}{2014}\right)^2+\frac{1}{2014}]\)
=\(2014\left(t-\frac{1}{2014}\right)^2+\frac{2013}{2014}\)\(\ge\frac{2013}{2014}\)
dấu''='' xảy ra khi t-1/2014=0 <=>1/x=1/2014=>x=2014
Ta có : \(A=\frac{x^2-2x+2014}{x^2}=\frac{2014x^2-4028x+2014^2}{x^2}=\frac{2013x^2+\left(x^2-4028x+2014^2\right)}{x^2}\)
\(=\frac{2013x^2}{x^2}+\frac{\left(x-2014\right)^2}{x^2}=2013+\frac{\left(x-2014\right)^2}{x^2}\)
Vì \(\frac{\left(x-2014\right)^2}{x^2}\ge0\forall x\)
Nên : \(A=2013+\frac{\left(x-2014\right)^2}{x^2}\ge2013\forall x\)
Vậy Amin = 2013 khi x = 2014
tìm n :
a ^(2n+6)(3n-9) = 1
tìm x , biết :
16^x : 4^x = 16
/2x-1/ = /2x-3/
/5x-3/ - x = 7
\(\frac{x+1}{2015}+\frac{x+2}{2014}+\frac{x+3}{2013}=-3\)
giải nhanh giùm mk nha !
mai mk phải nộp r !
(Quảng Ngãi)
Tìm GTNN của biểu thức \(P=\frac{x^2-2x+2014}{x^2}\).
Tìm giá trị của x để
D=\(\frac{x^2-2x+2014}{x^2}\), x khác 0 đạt GTNN
\(D=\frac{x^2-2x+2014}{x^2}\)
\(D=\frac{x^2}{x^2}-\frac{2x}{x^2}+\frac{2014}{x^2}\)
\(D=1-\frac{2}{x}+\frac{2014}{x^2}\)
\(D=2014\cdot\frac{1}{x^2}-2\cdot\frac{1}{x}+1\)
Đặt \(\frac{1}{x}=a\)
\(D=2014a^2-2a+1\)
\(D=2014\left(a^2-a\cdot\frac{1}{1007}+\frac{1}{2014}\right)\)
\(D=2014\left(a^2-2\cdot a\cdot\frac{1}{2014}+\frac{1}{2014^2}+\frac{2013}{2014^2}\right)\)
\(D=2014\left[\left(a-\frac{1}{2014}\right)^2+\frac{2013}{2014^2}\right]\)
\(D=2014\left(a-\frac{1}{2014}\right)^2+\frac{2013}{2014}\ge\frac{2013}{2014}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow a=\frac{1}{2014}\Leftrightarrow\frac{1}{x}=\frac{1}{2014}\Leftrightarrow x=2014\)
Vậy....
tìm GTNN của P= 4x+2y, biết 2x^2+3y^2=6
Tìm GTNN :x^2+15y^2+xy+8x+y+2017
Timg GTNN: a^2+b^2+ab-3a-3b+2014
giải kĩ giúp mình nha đặc biệt là 2 bài cuối . Thanhk you!
Viết được bao nhiêu chữ số có 3 chữ số mà mỗi số chỉ có duy nhất 1 chữ số 4?
mình k'o hiểu lắm . Nếu mình thì mình đã giúp bạn rồi .Cho mình xin lỗi
Với \(x\ne0\) tìm GTNN của \(A=\frac{x^2-2x+2014}{x^2}\)
\(A=1-\frac{2}{x}+\frac{2014}{x^2}\)\(=\left(\frac{1}{x}-\frac{1}{2014}\right)^2+\frac{2013}{2014}\ge\frac{2013}{2014}\)
\(A_{min}=\frac{2013}{2014}\Leftrightarrow x=2014\left(TM\right)\)
với x≠ -1 , tìm GTNN của biểu thức A= \(\frac{x^2-2x+2014}{\left(x+1\right)^2}\)
Vì \(A=\frac{x^2-2x+2014}{\left(x+1\right)^2}\)
\(\Rightarrow x^2-2x+2014=A\left(x+1\right)^2\)
\(\Leftrightarrow x^2-2x+2014=Ax^2+2Ax+A\)
\(\Leftrightarrow\left(1-A\right)x^2-2\left(A+1\right)x+\left(2014-A\right)=0\)
\(\Delta=4\left(A+1\right)^2-4\left(1-A\right)\left(2014-A\right)\)
\(=8068A-8052\)
Vì A có GTNN nên phương trình có nghiệm
\(\Leftrightarrow8068A-8052\ge0\Leftrightarrow A\ge\frac{2013}{2017}\)
Dấu "=" khi \(x=\frac{2015}{2}\)
Tìm GTNN hoặc GTLN của biểu thức sau:
a) A = | X + \(\frac{15}{2}\)|
b) B = | 2X - 4 | + \(\frac{1}{2}\)
c) C = -9 - | \(\frac{1}{2}\)X + 5|
d) D = - | \(\frac{1}{3}\)- X | - 7
giải giùm mình với 2 trong 4 câu cũng được