\(A=1-\frac{2}{x}+\frac{2014}{x^2}\)\(=\left(\frac{1}{x}-\frac{1}{2014}\right)^2+\frac{2013}{2014}\ge\frac{2013}{2014}\)
\(A_{min}=\frac{2013}{2014}\Leftrightarrow x=2014\left(TM\right)\)
\(A=1-\frac{2}{x}+\frac{2014}{x^2}\)\(=\left(\frac{1}{x}-\frac{1}{2014}\right)^2+\frac{2013}{2014}\ge\frac{2013}{2014}\)
\(A_{min}=\frac{2013}{2014}\Leftrightarrow x=2014\left(TM\right)\)
Với \(x\ne0\), tìm GTNN của biểu thức \(A=\frac{x^2-3x+2019}{x^2}\)
b, \(D=\frac{x^5+2}{x^3}\) Với x > 0
4, (34, 36/ 221) Tìm GTNN của bt: a, E=\(x^2+\frac{2}{x^3}\) với x > 0; b, \(F=\frac{x^3+1}{x^2}\) Với x > 0
6, (68/28 BÙI VĂN TUYÊN) Tìm GTNN của bt: \(Q=\frac{x^2+2x+17}{2\left(x+1\right)}\) Với x > 0
7, (69/28 BÙI VĂN TUYÊN) Tìm GTNN của bt: \(R=\frac{x+6\sqrt{x}+34}{\sqrt{x}+3}\) Với x > 0
8, (70/28 BÙI VĂN TUYÊN) Tìm GTNN của bt: \(S=\frac{x^3+2000}{x}\) Với x > 0
1/CMR
a/\(x^4-2x^3+2x^2-2x+1\ge0\forall x\in R\)
b/cho \(a\ge0,b\ge2,a+b+c=3\). CMR : \(a^2+b^2+c^2\le5\)
c/cho a,b,c >0 . CMR : \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\ge4\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\)
2/ cho \(x,y\ge0,x+y=1\). tìm GTLN,GTNN của A =\(x^2+y^2\)
3/ cho x,y>0 .tìm GTNN của B= \(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)
Tìm GTNN của hàm số \(Y=\dfrac{x^2+2x+33}{4x-4}\) với x>1
\(N=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
a, RG N
b, Tìm GTNN của N
Cho các số dương x, y, z thỏa mãn: \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2014\). Tìm GTNN của biểu thức
T=\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Chmr nếu:
\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\) với \(x\ne y,yz\ne1,xz\ne1,x\ne0,y\ne0,z\ne0\)
thì: \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(đk:x\ne4;x\ge0\)
\(A=\frac{2x-3\sqrt{x}-2}{\sqrt{x}-2}\)
\(B=\frac{\sqrt{x^3}-\sqrt{x}+2x-2}{\sqrt{x}+2}\)
a) tìm x để B=A+1
b)C=B-A tìm GTNN của C
Tìm GTNN của:
\(\frac{x^2+x+1}{x^2+2x+2}\)