cho hệ phương trình :
2x+ax=1 3ax-y=-2
Tìm a để hệ có nghiệm x<0, y >0
Cho hệ phương trình x + y = m - 1 x 2 + y 2 - 2 x - 2 y = - 1 . Tìm m để hệ phương trình có nghiệm x 0 ; y 0 thỏa mãn P = x 0 2 + y 0 2 nhỏ nhất
Cho hệ phương trình : x + a y = 3 a x - y = 2
c) Tìm giá trị của a để hệ phương trình có nghiệm (x; y) thỏa mãn x = 2 y
c) Hệ phương trình đã cho có nghiệm
Theo đề bài : x= y
Vậy với thì hệ phương trình có nghiệm (x; y) thỏa mãn x = 2 y
Cho hệ phương trình :
x + a y = 3 a x - y = 2
b) Tìm điều kiện của a để hệ phương trình có nghiệm duy nhất thỏa mãn x + y > 0
Do a 2 + 1 ≠ 0 ∀ x nên hệ phương trình trở thành:
Khi đó:
Vậy với a > (-1)/5 thì hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn x+y >0
Cho hệ phương trình\(\left\{{}\begin{matrix}ax-2y=a\\-2x+y=a+1\end{matrix}\right.\)
a. Giải hệ khi a=2
b. Tìm a để hệ pt có nghiệm duy nhất (x;y) sao cho x-y=1
a. Bạn tự giải.
b.
\(\left\{{}\begin{matrix}ax-2y=a\\-4x+2y=2a+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}ax-2y=a\\\left(a-4\right)x=3a+2\end{matrix}\right.\)
Hệ có nghiệm duy nhất khi \(a-4\ne0\Leftrightarrow a\ne4\)
Khi đó: \(\left\{{}\begin{matrix}x=\dfrac{3a+2}{a-4}\\y=\dfrac{a^2+3a}{a-4}\end{matrix}\right.\)
\(x-y=1\Leftrightarrow\dfrac{3a+2}{a-4}-\dfrac{a^2+3a}{a-4}=1\)
\(\Leftrightarrow\dfrac{2-a^2}{a-4}=1\Leftrightarrow2-a^2=a-4\)
\(\Leftrightarrow a^2+a-6=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-3\end{matrix}\right.\)
Cho hệ phương trình \(\hept{\begin{cases}x+ay=1\\-ax+y=a\end{cases}}\)
a, Tìm giá trị nguyên của a để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn 2x -y= a+1
b, tìm a để hệ có nghiệm (x;y) sao cho x<0; y<0
\(\hept{\begin{cases}x+ay=1\\\\-ax+y=a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-ay\\-a\left(1-ay\right)+y=a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-\frac{2a^2}{1+a^2}=\frac{1-a^2}{1+a^2}\\y=\frac{2a}{1+a^2}\end{cases}}\)
Theo đề bài ta có \(\hept{\begin{cases}x< 0\\y< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}1-a^2< 0\\2a< 0\end{cases}}\)
\(\Leftrightarrow x< -1\)
a/ Ta xem đây là hệ phương trình 3 ẩn rồi giải bình thường.
\(\hept{\begin{cases}x+ay=1\\-ax+y=a\\2x-y=a+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-ay\\-a\left(1-ay\right)+y=a\\2\left(1-ay\right)-y=a+1\end{cases}}\)
Tới đây giải tiếp nhé. Không có bút giấy nháp nên giúp tới đây nhé. Chỉ cần thế là được nhé
Cho hệ phương trình − a x + y = 3 x + 1 + y = 2 . Giá trị của a để hệ phương trình có nghiệm duy nhất là?
A. − 2 ≤ a ≤ 1
B. a > 1 a < − 1
C. −2 < a < 1
D. a ≥ 1 a < − 2
Ta có − a x + y = 3 x + 1 + y = 2
⇔ y = a x + 3 | x + 1 | + a x + 3 = 2 ⇔ y = a x + 3 | x + 1 | + a x + 1 = 0
Nếu x ≥ − 1 ta có x + 1 + ax + 1 = 0 ⇒ x(a + 1) = −2 (1)
Phương trình (1) có nghiệm duy nhất ⇔ a ≠ −1 x = − 2 a + 1 ⇒ y = a + 3 a + 1
x ≥ − 1 ⇔ − 2 a + 1 ≥ − 1 ⇔ − 2 a + 1 + 1 ≥ 0 ⇔ a − 1 a + 1 ≥ 0 ⇔ a − 1 a + 1 ≥ 0 a ≠ − 1 ⇔ a ≥ 1 a < − 1
Nếu a < −1 ta có –x – 1 + ax + 1 = 0 ⇒ (a – 1)x = 0 (2)
Nếu a = 1 thì (2) là 0x = 0 đúng với mọi x < −1 nên (2) có vô số nghiệm hay hệ đã cho có vô số nghiệm (loại)
Nếu a ≠ 1 thì (2) có nghiệm duy nhất x = 0 (loại so x < −1). Do đó (2) vô nghiệm khi a ≠ 1
Để hệ phương trình đã cho có nghiệm duy nhất thì có 2 trường hợp:
Trường hợp 1: Phương trình (1) vô nghiệm và phương trình (2) có nghiệm duy nhất
Trường hợp này không xảy ra vì (2) chỉ có thể vô nghiệm hoặc vô số nghiệm
Trường hợp 2: Phương trình (1) có nghiệm duy nhất và phương trình (2) vô nghiệm ⇔ a ≥ 1 a < − 1 a ≠ 1 ⇔ a > 1 a < − 1
Đáp án:B
Cho hệ phương trình: 2 x − y = 2 − a x + 2 y = a + 1 . Giá trị thích hợp của tham số a để tổng bình phương nghiệm của hệ phương trình đạt giá trị nhỏ nhất.
A. a = 1
B. a = − 1
C. a = 1 2
D. a = − 1 2
Ta có: D = 2 − 1 1 2 = 5 ≠ 0
Vì D ≠ 0 nên hệ phương trình có nghiệm duy nhất
x = D x D = 5 − a 5 ; y = D y D = 3 a 5
Khi đó:
x 2 + y 2 = 5 − a 5 2 + 3 a 5 2
= 25 − 10 a + 10 a 2 25 = 10 25 a 2 − a + 1 = 2 5 a − 1 2 2 + 9 10 ≥ 9 10
Dấu “=” xảy ra ⇔ a = 1 2
Đáp án cần chọn là: C
Cho hệ phương trình: 2x+y=2
x+2y=4m+5
a, Giải hệ với m=-1
b, Tìm m để hệ có nghiệm (x0;y0) thỏa mãn x0=y0-2
HPT : \(\hept{\begin{cases}2x+y=2\\x+2y=4m+5\end{cases}}\)
a) Ta có : x + 2y = 4m + 5
Thay m = -1, ta được:
x + 2y = 4.(-1) + 5
\(\Leftrightarrow\)x + 2y = 1 (1)
Lại có : 2x + y = 2 (2)
Cộng (1) với (2), ta được :
3x + 3y = 1 + 2
\(\Leftrightarrow\)3(x + y) = 3
\(\Leftrightarrow\)x + y = 1 (3)
Lấy (2) trừ (3), ta được :
2x + y - x - y = 2 - 1
\(\Leftrightarrow\)x = 1
\(\Leftrightarrow\)y = 0
Vậy với \(m=-1\Leftrightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}\)
b) Thay xo = yo - 2 vào HPT, ta được :
\(\Leftrightarrow\hept{\begin{cases}2\left(y_o-2\right)+y_o=2\\y_o-2+2y_o=4m+5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3y_o-6=0\\3y_o-6=4m+1\end{cases}}\)
\(\Leftrightarrow4m+1=0\)
\(\Leftrightarrow m=-\frac{1}{4}\)
Vậy để \(x_o=y_o-2\Leftrightarrow m=-\frac{1}{4}\)
Tìm giá trị của a và b:
Để hệ phương trình 3 a x - b + 1 y = 93 b x + 4 a y = - 3 có nghiệm là (x; y) = (1; -5)
Thay x = 1, y = -5 vào hệ phương trình ta được:
Vậy khi a = 1,b = 17 thì hệ phương trình 3 a x - b + 1 y = 93 b x + 4 a y = - 3 có nghiệm là (x; y) = (1; -5).