Tìm X
|x+1|+|x+2|+........+|x+12|=11x
Tìm x : |x+ 1/2|+|x+1/6|+|x+1/12|+|x+1/20|+...+|x+1/110|=11x
tìm x biết : (x+1/2)+(x+1/6)+(1/12)+(x+1/20)+...+(x+1/110) =11x
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{11-10}{10.11}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(=1-\frac{1}{11}=\frac{10}{11}\)
Phương trình ban đầu tương đương với:
\(10x+\frac{10}{11}=11x\)
\(\Leftrightarrow x=\frac{10}{11}\)
Tìm x biết: \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+\left|x+\frac{1}{20}\right|+...+\left|x+\frac{1}{110}\right|=11x\) = 11x
Ta có: \(\left|x+\frac{1}{2}\right|\ge0\left|x+\frac{1}{6}\right|\ge0;...;\left|x+\frac{1}{110}\ge0\right|\)
\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{100}\right|\ge0\)
\(\Rightarrow11x\ge0\Rightarrow x\ge0\)
\(\Rightarrow x+\frac{1}{2}>0;x+\frac{1}{6}>0;...;x+\frac{1}{100}>0\)
\(\Rightarrow\left|x+\frac{1}{2}\right|=x+\frac{1}{2};\left|x+\frac{1}{6}\right|=x+\frac{1}{6};...;\left|x+\frac{1}{100}\right|=x+\frac{1}{110}\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{110}\right)=11x\)
\(\Rightarrow10x+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)=11x\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=11x\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=11x\)
\(\Rightarrow10x+\frac{10}{11}=11x\)
\(\Rightarrow x=\frac{10}{11}\)
vì |x+1/2| ; |x+1/6| ; ............ ; |x+110| lớn hơn hoặc bằng 0=> 11x lớn hớn hoặc bằng 0=> x lớn hớn hoặc bằng 0
=>x+1/2 ; x+1/6 ; ............ ; x+110 lớn hơn hoặc bằng 0
ta có: x+1/2+x+1/6+x+1/12+...+x+1/110=11x
(x+x+...+x)+(1/1.2+1/2.3+1/3.4+...+1/10.11)=11x
10x+(1-1/10)=11x
x= 1/9
à mình bỏ dấu" | " vì khi mà lớn hơn hoặc bằng 1 rồi thfi bỏ ra nó vẫn có giá trị bằng giá trị trị lúc ban đầu
Tìm x biết |x+1/2|+|x+1/6|+|x+1/12|+............+|x+1/110|=11x
Giúp mình với
Ta có: \(\left|x+\frac{1}{2}\right|\ge0;\left|x+\frac{1}{6}\right|\ge0;...;\left|x+\frac{1}{110}\ge0\right|\)
=> \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{100}\right|\ge0\)
=> 11x \(\ge\)0 => x\(\ge\)0
=> \(x+\frac{1}{2}>0;x+\frac{1}{6}>0;...;x+\frac{1}{110}>0\)
=> \(\left|x+\frac{1}{2}\right|=x+\frac{1}{2};\left|x+\frac{1}{6}\right|=x+\frac{1}{6};...;\left|x+\frac{1}{110}\right|=x+\frac{1}{110}\)
=> \(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{110}\right)=11x\)
=> 10x + \(\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)=11x\)
=> 10x + \(\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)\)= 11x
=> 10x + \(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)\)= 11x
=> 10x + \(\frac{10}{11}\)= 11x
=> x = \(\frac{10}{11}\)
Vậy x = \(\frac{10}{11}\)
Vì có 10 cái x cộng lại. Dốt vừa thôi. Đúng là ngu như 🐷
Tìm x Biết
|x+1/2|+|x+1/6|+|x+1/12|+|x+1/20|+...+|x+1/100|=11x
12/x-2/+(x-2)^2=/11x-22/.tìm x
Tìm x, biết:
\(\)|x+\(\dfrac{1}{2}\)|+|x+\(\dfrac{1}{6}\)|+\(\left|x+\dfrac{1}{12}\right|\)+\(\left|x+\dfrac{1}{20}\right|\)+...+\(\left|x+\dfrac{1}{110}\right|\)=11x
\(\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{6}\right|+...+\left|x+\dfrac{1}{110}\right|=11x\left(đk:x\ge0\right)\)
\(\Leftrightarrow x+\dfrac{1}{2}+x+\dfrac{1}{6}+x+\dfrac{1}{12}+...+x+\dfrac{1}{110}=11x\)
\(\Leftrightarrow10x+\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{10.11}\right)=11x\)
\(\Leftrightarrow x=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{10}-\dfrac{1}{11}\)
\(\Leftrightarrow x=1-\dfrac{1}{11}=\dfrac{10}{11}\left(tm\right)\)
Cho biểu thức: A= (1+2−2√xx−12−2xx−1):(1√x+11x+1-√xx√x+1xxx+1) với x≥0,x≠1.
a Rút gọn A
b TÌm GTLN của A
tìm x thỏa mãn:
12.|x-2|+(x-2)^2=|11x-22|
=> 12. |x - 2| + |x - 2|2 = 11.|x - 2|
=> |x - 2| + | x - 2|2 = 0
=> |x - 2|. (1 + |x - 2|) = 0
=> |x - 2| = 0 (Vì 1 + |x - 2| > 1 > 0)
=> x - 2 = 0 => x = 2
Vậy x = 2