Giải pt nghiệm nguyên:x^2+2y^2+4x+2xy+9y+3=0
Giải phương trình nghiệm nguyên:
\(x^2+2y^2+2xy+4x+9y+3=0\)
x^2 + 2y^2 + 2xy + 4x + 9y + 3 = 0
<=> x^2 + y^2 + 4 + 2xy + 4x + 4y + y^2 + 5y - 1 = 0
<=> (x + y + 2)^2 + y^2 + 5y - 1 = 0
<=> (x + y + 2)^2 + y^2 + 4y + 4 + y - 5 = 0
<=> (x + y + 2)^2 + (y + 2)^2 + y + 2 = 7
để gọn trong việc trình bài ta đặt u = y + 2 (với u nguyên).
ta có pt:
(x + u)^2 + u^2 + u = 7
<=> (x + u)^2 + (u + 1/2)^2 = 7 + 1 / 4 (**)
từ (**) ta thấy: 0 ≤ (x + u)^2 ≤ 7 + 1 / 4
vì (x + u) là số nguyên nên (x + u)^2 chỉ có thể nhận các giá trị là: 0, 1, 4.
*nếu (x + u)^2 = 0
(**) => (u + 1/2)^2 = 7 + 1 / 4
=> u^2 + u - 7 = 0 pt này không có nghiệm nguyên
*nếu (x + u)^2 = 4
(**) => (u + 1/2)^2 = 3 + 1 / 4
=> u^2 + u - 3 = 0 không có nghiệm nguyên.
*nếu (x + u)^2 = 1
(**) => (u + 1/2)^2 = 6 + 1 / 4
=> u^2 + u - 6 = 0
=> u = - 3 hoặc u = 2
+ với u = -3 => y = - 3 - 2 = - 5
có: (x - 3)^2 = 1
=> x - 3 = -1 hoặc x - 3 = 1
=> x = 2 hoặc x = 4
+ với u = 2 => y = 0
có: (x + 2)^2 = 1 => x + 2 = - 1 hoặc x + 2 = 1
=> x = - 3 hoặc x = -1
tóm lại pt có các nghiệm nguyên (x, y) là:
(2, - 5), (4, - 5), (- 3, 0), (-1, 0)
Thông cảm nha tại tớ làm chi tiết nên bị dài
x^2 + 2y^2 + 2xy + 4x + 9y + 3 = 0
<=> x^2 + y^2 + 4 + 2xy + 4x + 4y + y^2 + 5y - 1 = 0
<=> (x + y + 2)^2 + y^2 + 5y - 1 = 0
<=> (x + y + 2)^2 + y^2 + 4y + 4 + y - 5 = 0
<=> (x + y + 2)^2 + (y + 2)^2 + y + 2 = 7
để gọn trong việc trình bài ta đặt u = y + 2 (với u nguyên).
ta có pt:
(x + u)^2 + u^2 + u = 7
<=> (x + u)^2 + (u + 1/2)^2 = 7 + 1 / 4 (**)
từ (**) ta thấy: 0 ≤ (x + u)^2 ≤ 7 + 1 / 4
vì (x + u) là số nguyên nên (x + u)^2 chỉ có thể nhận các giá trị là: 0, 1, 4.
*nếu (x + u)^2 = 0
(**) => (u + 1/2)^2 = 7 + 1 / 4
=> u^2 + u - 7 = 0 pt này không có nghiệm nguyên
*nếu (x + u)^2 = 4
(**) => (u + 1/2)^2 = 3 + 1 / 4
=> u^2 + u - 3 = 0 không có nghiệm nguyên.
*nếu (x + u)^2 = 1
(**) => (u + 1/2)^2 = 6 + 1 / 4
=> u^2 + u - 6 = 0
=> u = - 3 hoặc u = 2
+ với u = -3 => y = - 3 - 2 = - 5
có: (x - 3)^2 = 1
=> x - 3 = -1 hoặc x - 3 = 1
=> x = 2 hoặc x = 4
+ với u = 2 => y = 0
có: (x + 2)^2 = 1 => x + 2 = - 1 hoặc x + 2 = 1
=> x = - 3 hoặc x = -1
tóm lại pt có các nghiệm nguyên (x, y) là:
(2, - 5), (4, - 5), (- 3, 0), (-1, 0)
\(x^2+2y^2+2xy+4x+9y+3=0\)
\(\Leftrightarrow\left(x+y\right)^2+y^2+4x+9y+3=0\)
\(\Leftrightarrow\left(x+y\right)^2+4\left(x+y\right)+4+y^2+5y=1\)
\(\Leftrightarrow\left(x+y+2\right)^2+y^2+5y=1\)
\(\Leftrightarrow4\left(x+y+2\right)^2+4y^2+20y=4\)
\(\Leftrightarrow4\left(x+y+2\right)^2+4y^2+20y+25=29\)
\(\Leftrightarrow4\left(x+y+2\right)^2+\left(2y+5\right)^2=29\)
\(\Rightarrow\left(2y+5\right)^2\le29\)
\(\Leftrightarrow-5\le2y+5\le5\)
\(\Rightarrow2y+5\in\left\{-5;-3;-1;1;3;5\right\}\)(Do 2y + 5 lẻ)
Từ đó tìm được y rồi suy ra x
Giải phương trình sau : x2 + 2y2 + 2xy + 4x + 9y + 3 = 0
giải hệ pt \(\hept{\begin{cases}10x^2-40x+9y^3+49=0\\x^2y^2-4x+4y^2=0\end{cases}}\)
tim x y z biết
a,4x^2+9y^2+4x-24y+17=0
b,2x^2+2y^2+z^2+2xy-2xz-6y+9=0
c,x^2+2y+2xy+2x+6y+5=0
tim x y z biết
a,4x^2+9y^2+4x-24y+17=0
b,2x^2+2y^2+z^2+2xy-2xz-6y+9=0
c,x^2+2y+2xy+2x+6y+5=0
\(a,4x^2+9y^2+4x-24y+17=0\)
\(\Rightarrow\left(4x^2+4x+1\right)+\left(9y^2-24y+16\right)=0\)
\(\Rightarrow\left(2x+1\right)^2+\left(3y-4\right)^2=0\)
\(\left(2x+1\right)^2\ge0;\left(3y-4\right)^2\ge0\)
\(\Rightarrow\hept{\begin{cases}\left(2x+1\right)^2=0\\\left(3y-4\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x+1=0\\3y-4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{4}{3}\end{cases}}}\)
Giải pt nghiệm nguyên
a)2x^2 + 4x=19-3y^2
b)3x^2 + 4y^2=6x+13
c)5x^2 + 2xy +y^2 -4x-40=0
giải hệ phương trình: \(\hept{\begin{cases}16x^3y^3-9y^3=\left(2xy-y\right)\left(4xy^2+3\right)\\4x^2y^2-2xy^2+y^2=3\end{cases}}\)
TOÁN 7 ĐÂY!!
Giải pt nghiệm nguyên:
a)\(x^4-y^4+z^4+2x^2z^2+3x^2+4x^2+1=0\)
b) \(x^2y^2-x^2-8y^2=2xy\)
a, 5xy*(3x+9y)
b, (2xy^2)*(x^4-2xy^2)
c, (5x^4y^3+7y^2)*(3x^2y-4xy^2)
d, (5x^2y-4x^2)*(3x+2y)