a, Tìm GTNN của A = (x-1)(x+2)(x+3)(x+6)
b, Tìm GTLN cuả B= (1-xn)(1+xn)+(2-yn)(2+yn)
Bài 4: Làm tính nhân
a) xn. yn+2.(xy+x2y+1)
b) (4xn-2+xn+1).xn
c) 4xy.(xn-2 yn+1+ xn yn+1)
Rút gọn biểu thức:
a) x(x – y) + y(x – y)
b) xn-1(x + y) – y(xn–1 + yn–1)
a) x(x – y) + y(x – y) = x2 – xy + yx – y2 = x2 – xy + xy – y2 = x2 – y2
b) xn–1(x + y) – y( xn–1 + yn–1 ) = xn + xn–1y – yxn–1 – yn
= xn + xn–1y – xn–1y – yn = xn - yn
a) x (x - y) + y (x - y) = x2 – xy+ yx – y2
= x2 – xy+ xy – y2
= x2 – y2
b) xn – 1 (x + y) – y(xn – 1 + yn – 1) =xn+ xn – 1y – yxn – 1 - yn
= xn + xn – 1y - xn – 1y - yn
= xn – yn.
a) x(x – y) + y(x – y) = x2 – xy + yx – y2
= x2 – xy + xy – y2
= x2 – y2
b) xn–1(x + y) – y( xn–1 + yn–1 )
= xn + xn–1y – yxn–1 – yn
= xn + xn–1y – xn–1y – yn
= xn - yn
Đề bài: Rút gọn hai biểu thức sau:
a) x(x-y)+y(x-y):
b) xn-1(x+y)-y(xn-1+yn-1).
a: ta có: \(x\left(x-y\right)+y\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y\right)\)
\(=x^2-y^2\)
b: Ta có: \(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
\(=x^n+x^{n-1}\cdot y-x^{n-1}\cdot y-y^n\)
\(=x^n-y^n\)
xn–1(x + y) – y(xn–1 + yn–1)
xn - 1(x + y) - y(xn - 1 + yn - 1)
= xn - x + y - yxn - y2 n - 1
Rút gọn biểu thức: xn-1(x + y) – y(xn–1 + yn–1)
x(x – y) + y(x – y)
= x.x – x.y + y.x – y.y
= x2 – xy + xy – y2
= x2 – y2 + (xy – xy)
= x2 – y2
1. tìm GTNN của A= x(x+2)(x+4)(x+6)+8
2. tìm GTLN của B=5+(1-x)(x+2)(x+3)(x+6)3
3.tìm GTNN của C=(x+3)4 + (x-7)4
4. Cho x>0. Tìm GTNN của P=\(\dfrac{4x^2+1}{2x}\)
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
3.
Đặt $x+3=a; 7-x=b$ thì $a+b=10$
$C=a^4+b^4$
Áp dụng BĐT Bunhiacopxky:
$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$
$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$
$\Rightarrow a^2+b^2\geq 50$
$\Rightarrow C\geq \frac{50^2}{2}=1250$
Vậy $C_{\min}=1250$
Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$
rút gọn biểu thức
x(x-y)+y(x-y)
xn-1 (x+y)-y(xn-1+yn-1)
\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
=\(x^n+x^{n-1}y-x^{n-1}y-y^n\)
=\(x^n-y^n\)
\(x\left(x-y\right)+y\left(x-y\right)\)
\(=x.x-x.y+y.x-y.y\)
\(=x^2-xy+yx-y^2\)
=\(x^2-y^2\)
x(x-y)+y(x-y)
= x.x+x.(-y)+y.x+y.(-y)
=x^2-xy+yx-y^2
=x^2-y^2
4xy nhân (xn-2 nhân yn+1+xn nhân yn+1)
4xy nhân (xn-2 nhân yn+1+xn nhân yn +1)
4x\(^{1+n-2}\)y\(^{1+n+1}\)4xy\(^{1+n}\)+4xy