Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 3 2019 lúc 8:30

a) x = 4                

b) x = 7     

c) x = 2                

d) x = 5

e) x = 2                

f) x= 1. 

ĐÀM NGỌC HÀ
25 tháng 6 2021 lúc 7:56

Mua tài khoản VIP để học tập không giới hạn trên OLM!

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 2 2017 lúc 5:44

a) x = 4

b) x = 7

c) x = 2

d) x = 5

e) x = 2

 f) x= 1

Phan Hoàng Quân
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 4 2018 lúc 11:33

a, 36:(x–5) =  2 2

(x–5) = 9

x = 14

b, [3.(70–x)+5]:2 = 46

[3.(70–x)+5] = 92

70–x = 29

x = 41

c, 450:[41–(2x–5)] =  3 2 .5

41–(2x–5) = 10

2x–5 = 31

2x = 36

x = 18

d, 230+[ 2 4 +(x–5)] = 315. 2018 0

16+(x–5) = 315–230

x–5 = 85–16

x = 69+5

x = 74

e,  2 x + 2 x + 1  = 48

2 x .(2+1) = 48

2 x = 16 =  2 4

x = 4

f,  3 x + 2 + 3 x  = 2430

3 x . 3 2 + 1 = 2430

3 x = 2430:10 = 243 =  3 5

x = 5

PHÚ ĐINH NGUYÊN
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
9 tháng 10 2023 lúc 10:13

a)

 \(\begin{array}{l}\left( {13x{\rm{ }}-{\rm{ }}{{12}^2}} \right):{\rm{ }}5{\rm{ }} = {\rm{ }}5\\13x{\rm{ }}-{\rm{ }}{12^2} = 5.5\\13x{\rm{ }}-{\rm{ }}144 = 25\\13x = 25 + 144\\13x = 169\\x = 13\end{array}\)

Vậy \(x = 13\)

b)

\(\begin{array}{l}3x\left[ {{8^2} - 2.\left( {{2^5} - {\rm{ }}1} \right)} \right]{\rm{ }} = {\rm{ }}2022\\3x\left[ {64 - 2.\left( {32 - {\rm{ }}1} \right)} \right]{\rm{ }} = {\rm{ }}2022\\3x\left[ {64 - 2.31} \right]{\rm{ }} = {\rm{ }}2022\\3x\left( {64 - 62} \right){\rm{ }} = {\rm{ }}2022\\3x.2 = 2022\\6x = 2022\\x = 337\end{array}\)

Vậy \(x = 337.\)

6a01dd_nguyenphuonghoa.
Xem chi tiết

https://olm.vn/cau-hoi/a-cho-a12211216211002-ctr-a12-b-cho-p122132142120232-ctr-p-khong-la-so-tu-nhien-c-cho-c132152172120211.8293222842881

Cô làm rồi em nhá

6a01dd_nguyenphuonghoa.
Xem chi tiết

Câu a, xem lại đề bài

Câu b: 

    P =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ...+ \(\dfrac{1}{2023^2}\)

   Vì  \(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\)                =  \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)

         \(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\)                = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)

         \(\dfrac{1}{4^2}\)  < \(\dfrac{1}{3.4}\)               = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) 

     ........................

        \(\dfrac{1}{2023^2}\) < \(\dfrac{1}{2022.2023}\) = \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)

Cộng vế với vế ta có:  

0< P < 1 - \(\dfrac{1}{2023}\) < 1

Vậy 0 < P < 1 nên P không phải là số tự nhiên vì không tồn tại số tự nhiên giữa hai số tự nhiên liên tiếp

 

Câu c:  

C = \(\dfrac{1}{3^2}\) + \(\dfrac{1}{5^2}\) + \(\dfrac{1}{7^2}\) + ....+ \(\dfrac{1}{2021^2}\) + \(\dfrac{1}{2023^2}\) = C 

B =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+ \(\dfrac{1}{2020^2}\) + \(\dfrac{1}{2023^2}\) > 0 

Cộng vế với vế ta có: 

C+B =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{5^2}\)\(\dfrac{1}{6^2}\)+...+ \(\dfrac{1}{2023^2}\) > C + 0 = C > 0

             Mặt khác ta có: 

1 > \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{2023^2}\) (cm ở ý b)

Vậy 1 > C > 0 hay C không phải là số tự nhiên (đpcm)

 

 

phù thủy thông minh
Xem chi tiết
huỳnh minh quí
31 tháng 12 2015 lúc 18:54

42+(3x+7):2=5^2+3^4

42+(3x+7):2=25+81

42+(3x+7):2=106

(3x+7):2=106-42

(3x+7):2=64

(3x+7)=64x2

3x+7=128

3x=128-7

3x=121

x=121:3

x=121/3

tick nha bạn

Trần Phương Uyên
Xem chi tiết
HT.Phong (9A5)
1 tháng 9 2023 lúc 9:17

a) \(A=1+2+2^2+...+2^{80}\)

\(2A=2+2^2+2^3+...+2^{81}\)

\(2A-A=2+2^2+2^3+...+2^{81}-1-2-2^2-...-2^{80}\)

\(A=2^{81}-1\)

Nên A + 1 là:

\(A+1=2^{81}-1+1=2^{81}\)

b) \(B=1+3+3^2+...+3^{99}\)

\(3B=3+3^2+3^3+...+3^{100}\)

\(3B-B=3+3^2+3^3+...+3^{100}-1-3-3^2-...-3^{99}\)

\(2B=3^{100}-1\)

Nên 2B + 1 là:

\(2B+1=3^{100}-1+1=3^{100}\)

HT.Phong (9A5)
1 tháng 9 2023 lúc 9:25

2) 

a) \(2^x\cdot\left(1+2+2^2+...+2^{2015}\right)+1=2^{2016}\)

Gọi:

\(A=1+2+2^2+...+2^{2015}\)

\(2A=2+2^2+2^3+...+2^{2016}\)

\(A=2^{2016}-1\)

Ta có:

\(2^x\cdot\left(2^{2016}-1\right)+1=2^{2016}\)

\(\Rightarrow2^x\cdot\left(2^{2016}-1\right)=2^{2016}-1\)

\(\Rightarrow2^x=\dfrac{2^{2016}-1}{2^{2016}-1}=1\)

\(\Rightarrow2^x=2^0\)

\(\Rightarrow x=0\)

b) \(8^x-1=1+2+2^2+...+2^{2015}\)

Gọi: \(B=1+2+2^2+...+2^{2015}\)

\(2B=2+2^2+2^3+...+2^{2016}\)

\(B=2^{2016}-1\)

Ta có:

\(8^x-1=2^{2016}-1\)

\(\Rightarrow\left(2^3\right)^x-1=2^{2016}-1\)

\(\Rightarrow2^{3x}-1=2^{2016}-1\)

\(\Rightarrow2^{3x}=2^{2016}\)

\(\Rightarrow3x=2016\)

\(\Rightarrow x=\dfrac{2016}{3}\)

\(\Rightarrow x=672\)