so sánh :
a,\(\frac{6}{7}....\frac{12}{14}\)
b,\(\frac{2}{3}....\frac{3}{4}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Thục hiện phép tính
a) A = \(\frac{5.\left(2^2.3^2\right)^9.\left(2^2\right)^6-2.\left(2^2.3\right)^{14}.3^4}{5.2^{28}.3^{18}-7.2^{29}.3^{18}}\)
b) B = \(81.\left(\frac{12-\frac{12}{7}-\frac{12}{289}-\frac{12}{85}}{4-\frac{4}{7}-\frac{4}{289}-\frac{4}{85}}:\frac{5+\frac{5}{13}+\frac{5}{169}+\frac{5}{91}}{6+\frac{6}{13}+\frac{6}{169}+\frac{6}{91}}\right).\frac{158158158}{711711711}\)
a,
A = 5.(22 . 32 )9. (22)6 - 2. (22.3)14.34 / 5.228.318 - 7.229.318
A = 5.218.318.212 - 2. 228. 314. 34 / 5. 228. 318 - 7. 229. 318
A = 5.230.318 - 229. 318 / 5.2 28.318 - 7.229. 318
A = 229. 318(5.2-1) / 228. 318 (5 -7.2)
A = 2.9 / -9 = -2
Vậy A = -2
b,
B =81.( 12 - 12/7- 12/289 - 12/85 / 4 - 4/7 - 4/289 - 4/85 :
5 + 5/13 + 5/169 + 5/91 / 6 + 6/13 + 6/169 + 5/91 ) x 158158158
B = 81.[ 12.( 1 - 1/7 - 1/289 - 1/85) / 4.( 1 - 1/7 - 1/289 - 1/85 :
5.(1 + 1/13 + 1/169 + 1/91) / 6.(1+ 1/13 +1/169 + 1/91)] . 2/9
B = 81.[ 3 : 5/6 ] .2/9
B = 81.18/5 . 2/9
B = 1458/5 . 2/9
B = 324/5.
Vậy B = 324/5
CHÚC HỌC TỐT
Thực hiện phép tính:
a) \(A=\frac{5.\left(2^2.3^2\right)^9.\left(2^2\right)^6-2.\left(2^2.3\right)^{14}.3^4}{5.2^{28}.3^{18}-7.2^{29}.3^{18}}\)
b) \(B=81.\left[\frac{12-\frac{12}{7}-\frac{12}{289}-\frac{12}{85}}{4-\frac{4}{7}-\frac{4}{289}-\frac{4}{85}}:\frac{5+\frac{5}{13}+\frac{5}{169}+\frac{5}{91}}{6+\frac{6}{13}+\frac{6}{169}+\frac{6}{91}}\right].\frac{158158158}{711711711}\)
\(a)\) \(A=\frac{5\left(2^2.3^2\right)^9.\left(2^2\right)^6-2\left(2^2.3\right)^{14}.3^4}{5.2^{28}.3^{18}-7.2^{29}.3^{18}}\)
\(A=\frac{2^{30}.3^{18}.5-2^{29}.3^{18}}{2^{28}.3^{18}.5-2^{29}.3^{18}.7}\)
\(A=\frac{2^{29}.3^{18}\left(2.5-1\right)}{2^{28}.3^{18}\left(5-2.7\right)}\)
\(A=\frac{2\left(10-1\right)}{5-14}\)
\(A=\frac{2.9}{-9}\)
\(A=-2\)
Vậy \(A=-2\)
\(b)\) \(B=81.\left[\frac{12-\frac{12}{7}-\frac{12}{289}-\frac{12}{85}}{4-\frac{4}{7}-\frac{4}{289}-\frac{4}{85}}:\frac{5+\frac{5}{13}+\frac{5}{169}+\frac{5}{91}}{6+\frac{6}{13}+\frac{6}{169}+\frac{6}{91}}\right].\frac{158158158}{711711711}\)
\(B=81.\left[\frac{12\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}{4\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}:\frac{5\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}{6\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}\right].\frac{158158158}{711711711}\)
\(B=81.\left[\frac{12}{4}:\frac{5}{6}\right].\frac{2}{9}\)
\(B=81.\frac{18}{5}.\frac{2}{9}\)
\(B=\frac{324}{5}\)
Vậy \(B=\frac{324}{5}\)
Chúc bạn học tốt ~ ( mỏi tay qué >_< )
So sánh:
A=\(\frac{4}{7}+5+\frac{3}{7^2}+\frac{5}{7^3}+\frac{6}{7^4}\) và B=\(\frac{5}{7^4}+5+\frac{6}{7^2}+\frac{4}{7}+\frac{5}{7^3}\)
cách này mình tự nghĩ
\(\hept{\begin{cases}A=\frac{4}{7}+5+\frac{3}{7^2}+\frac{5}{7^3}+\frac{6}{7^4}\\B=\frac{5}{7^4}+5+\frac{6}{7^2}+\frac{4}{7}+\frac{5}{7^3}\end{cases}}\)
\(\Rightarrow A-B=\left(\frac{4}{7}-\frac{4}{7}\right)+\left(\frac{5}{7^3}-\frac{5}{7^3}\right)+\left(5-5\right)+\left(\frac{3}{7^2}-\frac{6}{7^2}\right)+\left(\frac{6}{7^4}-\frac{5}{7^4}\right)\)
\(\Rightarrow A-B=-\frac{3}{7^2}+\frac{1}{7^4}\)
\(\Rightarrow A-B=\frac{-3\times7^2}{7^4}+\frac{1}{7^4}\)
mà \(-3\times7^2< 1\Rightarrow\frac{1}{7^4}>\frac{-3\times7^2}{7^4}\Rightarrow B>A\)
Tìm x, biết:
a) 60%x + 0,4x + x :3 =2
b)1-\(\left(5\frac{3}{8}+x-7\frac{5}{24}\right):\left(-16\frac{2}{3}\right)\)
c)\(3\frac{1}{4}x-\frac{7}{6}x=\frac{-5}{12}+1\frac{2}{3}\)
Bài 2: Tính:
a) A= \(\frac{-45.58-45.42}{2+4+6+...+16+18}\)
b)1-2-3+4+5-6-7+...+601-602-603+604
b) \(\frac{\left(140\frac{3}{7}-138\frac{5}{12}\right):18\frac{1}{6}}{0,002}\)
Bài 3: Cho A và B, biết:
A=\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\) và B= \(\frac{4}{35}+\frac{4}{63}+\frac{4}{99}+\frac{4}{143}+\frac{4}{195}\)
Hãy so sánh A & B
Tính.
a) $\frac{4}{{25}}:\frac{4}{3}$
b) $\frac{3}{{14}}:\frac{6}{7}$
c) $\frac{{12}}{{15}}:2$
d) $\frac{{21}}{8}:6$
a) $\frac{4}{{25}}:\frac{4}{3} = \frac{4}{{25}} \times \frac{3}{4} = \frac{3}{{25}}$
b) $\frac{3}{{14}}:\frac{6}{7} = \frac{3}{{14}} \times \frac{7}{6} = \frac{{3 \times 7}}{{14 \times 6}} = \frac{{3 \times 7}}{{7 \times 2 \times 3 \times 2}} = \frac{1}{4}$
c) $\frac{{12}}{{15}}:2 = \frac{{12}}{{15}} \times \frac{1}{2} = \frac{{12 \times 1}}{{15 \times 2}} = \frac{{6 \times 2 \times 1}}{{15 \times 2}} = \frac{6}{{15}}$
d) $\frac{{21}}{8}:6 = \frac{{21}}{8} \times \frac{1}{6} = \frac{{21 \times 1}}{{8 \times 6}} = \frac{{7 \times 3 \times 1}}{{8 \times 3 \times 2}} = \frac{7}{{16}}$
Cho \(S=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+\frac{6}{5}+\frac{7}{6}+\frac{8}{7}+\frac{9}{8}+\frac{10}{9}+\frac{11}{10}+\frac{12}{11}\)
So sánh S với 10
Ta có :
\(S=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+\frac{6}{5}+\frac{7}{6}+\frac{8}{7}+\frac{9}{8}+\frac{10}{9}+\frac{11}{10}+\frac{12}{11}\)
\(S=\frac{2+1}{2}+\frac{3+1}{3}+\frac{4+1}{4}+...+\frac{11+1}{11}\)
\(S=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{11}\right)\)
\(S=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)\)
\(S=10+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)>10\)
\(\Rightarrow\)\(S>10\)
Vậy \(S>10\)
Chúc bạn học tốt ~
Thực hiện phép tính:
A =\(\frac{5.\left(2^2.3^2\right)^9.\left(2^2\right)^6-2.\left(2^2.3\right)^{14}.3^4}{5.2^{28}.3^{18}-7.2^{29}.3^{18}}\)
B= \(81.\frac{12-\frac{12}{7}-\frac{12}{289}-\frac{12}{85}5+\frac{5}{13}+\frac{5}{169}+\frac{5}{91}}{4-\frac{4}{7}-\frac{4}{289}-\frac{4}{85}6+\frac{6}{13}+\frac{6}{169}+\frac{6}{91}}.\frac{158158158}{711711711}\)
\(\frac{1+2+3+4+5}{6+7+8+9+10}\)và \(\frac{11+12+13+14+15}{5+6+7+8+9}\)
So sánh nhé các bạn
Gợi ý: Rút gọn 2 ps, quy đồng rồi so sánh.