Cho tứ giác lồi ABCD, Â = B = 90 độ. CM : AD//BC
Bài 1 : Cho tứ giác lồi ABCD có góc A + góc C = 180 độ, AB<AD, AC là tia phân giác của góc BAD . Chứng minh rằng BC = DC
Bài 2 : Cho tứ giác lồi ABCD có góc B + góc D = 180 độ. Hai đường thẳng AD và BC cắt nhau tại E, hai đường thẳng AB và DC cắt nhau tại F. Vẽ 2 tia phân giác của 2 góc BFC và CED, chúng cắt nhau tại M. Chứng minh rằng EMF = 90 độ
cho tứ giác lồi abcd có c = 40 độ , d=80 độ , ad=bc , gọi e , f , g , h lần lượt là trung điểm của ab , cd , db, ac cm tứ giác
emfn là hình thoi
tính góc mfn
Xét ΔABD có
E là trung điểm của AB
G là trung điểm của BD
Do đó: EG là đường trung bình của ΔABD
Suy ra: EG//AD và EG=AD/2(1)
Xét ΔADC có
H là trung điểm của AC
F là trung điểm của CD
Do đó: HF là đường trung bình của ΔADC
Suy ra: HF//AD và HF=AD/2(2)
Từ (1) và (2) suy ra EG//HF và EG=HF
Xét ΔABC có
E là trung điểm của AB
H là trung điểm của AC
Do đó: EH là đường trung bình của ΔABC
Suy ra: EH=BC/2=AD/2(3)
Từ (1) và (3) suy ra EG=EH
Xét tứ giác EHFG có
EG//HF
EG=HF
Do đó: EHFG là hình bình hành
mà EG=EH
nên EHFG là hình thoi
a) Ta có: \(AF=\dfrac{AD}{2}\)(F là trung điểm của AD)
\(BE=\dfrac{BC}{2}\)(E là trung điểm của BC)
mà AD=BC(Hai cạnh đối trong hình bình hành ABCD)
nên AF=BE
Xét tứ giác AFEB có
AF//BE(AD//BC, F∈AD, E∈BC)
AF=BE(cmt)
Do đó: AFEB là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Ta có: \(AD=2\cdot AB\)(gt)
mà \(AD=2\cdot AF\)(F là trung điểm của AD)
nên AB=AF
Hình bình hành AFEB có AB=AF(cmt)
nên AFEB là hình thoi(Dấu hiệu nhận biết hình thoi)
⇒Hai đường chéo AE và BF vuông góc với nhau tại trung điểm của mỗi đường(Định lí hình thoi)
hay AE⊥BF(đpcm)
b) Ta có: AFEB là hình thoi(cmt)
nên AF=FE=EB=AB và \(\widehat{A}=\widehat{FEB}\)(Số đo của các cạnh và các góc trong hình thoi AFEB)
hay \(\widehat{FEB}=60^0\)
Xét ΔFEB có FE=EB(cmt)
nen ΔFEB cân tại E(Định nghĩa tam giác cân)
Xét ΔFEB cân tại E có \(\widehat{FEB}=60^0\)(cmt)
nên ΔFEB đều(Dấu hiệu nhận biết tam giác cân)
⇒\(\widehat{BFE}=60^0\)(Số đo của một góc trong ΔFEB đều)
Ta có: AB//FE(hai cạnh đối trong hình thoi ABEF)
nên \(\widehat{A}=\widehat{DFE}\)(hai góc đồng vị)
hay \(\widehat{DFE}=60^0\)
Ta có: tia FE nằm giữa hai tia FB,FD
nên \(\widehat{DFB}=\widehat{DFE}+\widehat{BFE}\)
\(\Leftrightarrow\widehat{DFB}=60^0+60^0=120^0\)(1)
Ta có: AD//BC(hai cạnh đối trong hình bình hành ABCD)
nên \(\widehat{A}+\widehat{D}=180^0\)(hai góc trong cùng phía bù nhau)
hay \(\widehat{D}=180^0-60^0=120^0\)(2)
Từ (1) và (2) suy ra \(\widehat{DFB}=\widehat{D}\)
Xét tứ giác BFDC có
FD//BC(AD//BC, F∈AD)
nên BFDC là hình thang có hai đáy là FD và BC(Định nghĩa hình thang)
Hình thang BFDC có \(\widehat{DFB}=\widehat{D}\)(cmt)
nên BFDC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
Cho tứ giác ABCD có góc A=góc B=90 độ a)Cm AD//BC b)Cho D=3C.Tính C,D c)Cho D-C=30 độ.Tính C,D
a) Có AD ⊥ AB( góc A vuông)
BC ⊥ AB( góc B vuông)
=> AD // BC
b) Có tứ giác ABCD= 360 độ
mà A = B= 90 độ
=> C + D= ABCD - A - B
= 360 độ - 90 độ - 90 độ
= 180 độ
Có D = 3C và C + D = 180 độ
=> C = 45 độ
=> D = 135 độ
c) Có ABCD= 360 độ
A = B= 90 độ
=> C + D= 180 độ
=> D =180 độ - C
+) D - C = 30 độ
<=> 180 độ - C - C = 30 độ
<=> 2C= 150 độ
<=> C = 75 độ
=> D = 105 độ
Vậy a) AD // BC
b) C = 45 độ
D = 135 độ
c) C = 75 độ
D = 105 độ
Cho hình bình hành ABCD có AD = 2AB, Â = 60 độ. Gọi E và F lần lượt là trung điểm của BC và AD
a) CM: AE vuông góc BF
b) CM tứ giác BFDC là hình thang cân
c) Lấy điểm M đối xứng của A qua B. CM tứ giác BMCD là hình chữ nhật. Suy ra M, E, D thẳng hàng
a) Ta có: BE=BC2BE=BC2(E là trung điểm của BC)
mà AD=BC(Hai cạnh đối trong hình bình hành ABCD)
nên AF=BE
Xét tứ giác AFEB có
AF//BE(AD//BC, F∈AD, E∈BC)
AF=BE(cmt)
Do đó: AFEB là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Ta có: AD=2⋅ABAD=2⋅AB(gt)
mà AD=2⋅AFAD=2⋅AF(F là trung điểm của AD)
nên AB=AF
Hình bình hành AFEB có AB=AF(cmt)
nên AFEB là hình thoi(Dấu hiệu nhận biết hình thoi)
⇒Hai đường chéo AE và BF vuông góc với nhau tại trung điểm của mỗi đường(Định lí hình thoi)
hay AE⊥BF(đpcm)
b) Ta có: AFEB là hình thoi(cmt)
nên AF=FE=EB=AB và ˆA=ˆFEBA^=FEB^(Số đo của các cạnh và các góc trong hình thoi AFEB)
hay ˆFEB=600FEB^=600
Xét ΔFEB có FE=EB(cmt)
nen ΔFEB cân tại E(Định nghĩa tam giác cân)
Xét ΔFEB cân tại E có ˆFEB=600FEB^=600(cmt)
nên ΔFEB đều(Dấu hiệu nhận biết tam giác cân)
⇒ˆBFE=600BFE^=600(Số đo của một góc trong ΔFEB đều)
Ta có: AB//FE(hai cạnh đối trong hình thoi ABEF)
nên ˆA=ˆDFEA^=DFE^(hai góc đồng vị)
hay ˆDFE = 600DFE^ = 600
Ta có: tia FE nằm giữa hai tia FB,FD
nên ˆDFB=ˆDFE+ˆBFEDFB^=DFE^+BFE^
⇔ˆDFB=600+600=1200⇔DFB^=600+600=1200(1)
Ta có: AD//BC(hai cạnh đối trong hình bình hành ABCD)
nên ˆA+ˆD=1800A^+D^=1800(hai góc trong cùng phía bù nhau)
hay ˆD=1800−600=1200D^=1800−600=1200(2)
Từ (1) và (2) suy ra ˆDFB=ˆDDFB^=D^
Xét tứ giác BFDC có
FD//BC(AD//BC, F∈AD)
nên BFDC là hình thang có hai đáy là FD và BC(Định nghĩa hình thang)
Hình thang BFDC có ˆDFB=ˆDDFB^=D^(cmt)
nên BFDC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
Nguồn: https://hoc24.vn/hoi-dap/tim-kiem?id=136634&q=B%C3%A0i%202.%20Cho%20h%C3%ACnh%20b%C3%ACnh%20h%C3%A0nh%20ABCD%20c%C3%B3%20AD%20%3D%202AB%2C%20%C3%82%20%3D%2060%20%C4%91%E1%BB%99.%20G%E1%BB%8Di%20E%20v%C3%A0%20F%20l%E1%BA%A7n%20l%C6%B0%E1%BB%A3t%20l%C3%A0%20trung%20%C4%91i%E1%BB%83m%20c%E1%BB%A7a%20BC%20v%C3%A0%20ADa%29%20CM%3A%20AE%20vu%C3%B4ng%20g%C3%B3c%20BFb%29%20CM%20t%E1%BB%A9%20gi%C3%A1c%20BFDC%20l%C3%A0%20h%C3%ACnh%20thang%20c%C3%A2nc%29%20L%E1%BA%A5y%20%C4%91i%E1%BB%83m%20M%20%C4%91%E1%BB%91i%20x%E1%BB%A9ng%20c%E1%BB%A7a%20A%20qua%20B.%20CM%20t%E1%BB%A9%20gi%C3%A1c%20BMCD%20l%C3%A0%20h%C3%ACnh%20ch%E1%BB%AF%20nh%E1%BA%ADtd%29%20CM%20M%2C%20E%2C%20D%20th%E1%BA%B3ng%20h%C3%A0ng
Cho tứ giác ABCD có cạnh BC=10 cm, CD=13cm,AD=15 cm.Có góc A và góc B bằng 90 độ. Tính cạnh BA
Cho tứ giác lồi ABCD có AB=AC=AD=10 cm , góc B bằng 60 độ và góc A là 90 độ .
b. Tính khoảng cách BH và DK từ B và D đến AC
c. Tính HK
d. Vẽ BE
e. Vẽ BE vuông góc DC kéo dài . Tính BE,CE và DC
Bài 2. Cho hình bình hành ABCD có AD = 2AB, Â = 60 độ. Gọi E và F lần lượt là trung điểm của BC và AD
a) CM: AE vuông góc BF
b) CM tứ giác BFDC là hình thang cân
c) Lấy điểm M đối xứng của A qua B. CM tứ giác BMCD là hình chữ nhật
d) CM M, E, D thẳng hàng
a: Xét tứ giác AFEB có
AF//BE
AF=EB
Do đó: AFEB là hình bình hành
mà AF=AB
nên AFEB là hình thoi
=>AE\(\perp\)FB
c: Xét tứ giác BMCD có
BM//CD
BM=CD
Do đó: BMCD là hình bình hành
d: Ta có: BMCD là hình bình hành
nên BC và MD cắt nhau tại trung điểm của mỗi đường
mà E là trung điểm của BC
nên E là trung điểm của MD
hay M,E,D thẳng hàng
cho tứ giác lồi abcd có ab=ac=ad=10cm,góc b=60 độ và góc a =90 độ.tính các khoảng cách từ bh và dk từ b và d đến ac