Cho G là trọng tâm của tam giác. Chứng minh răng nếu AB + GB = AC +GC thì tam giác ABC cân
giúp em với ạ!
Cho tam giác ABC và trọng tâm G của nó. Chứng minh rằng tam giác ABC là tam giác cân khi và chỉ khi AB + GB = AC + GC
Cho tam giác ABC. Chứng minh rằng nếu \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\) thì G là trọng tâm của tam giác ABC ?
Ta đã biết nếu G' là trọng tâm tam giác ABC thì:
\(\overrightarrow{G'A}+\overrightarrow{G'B}+\overrightarrow{G'C}=\overrightarrow{0}\).
Gỉa sử có điểm G thỏa mãn: \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\).
Ta sẽ chứng minh \(G\equiv G'\).
Thật vậy:
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Leftrightarrow3\overrightarrow{GG'}+\overrightarrow{G'A}+\overrightarrow{G'B}+\overrightarrow{G'C}=\overrightarrow{0}\)
\(\Leftrightarrow3\overrightarrow{GG'}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{GG'}=\overrightarrow{0}\).
Vậy \(G\equiv G'\).
Cho tam giác ABC vuông tại A. Có AB=16cm, AC=30cm, G là trọng tâm của tam giác ABC. Tính GA+GB+GC?
Cho G là trọng tâm của tam giác đều ABC. Chứng minh rằng:
GA = GB = GC
Gọi trung điểm BC, CA, AB lần lượt là M, N, P.
Khi đó AM, BN, CP đồng quy tại trọng tâm G.
Ta có: ∆ABC đều suy ra:
+ ∆ABC cân tại A ⇒ BN = CP (theo chứng minh bài 26).
+ ∆ABC cân tại B ⇒ AM = CP (theo chứng minh bài 26).
⇒ AM = BN = CP (1)
Vì G là trọng tâm của ∆ABC nên theo tính chất đường trung tuyến:
Từ (1) , (2) ⇒ GA = GB = GC.
Cho tam giác ABC có AB = AC =5cm; BC =8cm. Gọi G là trọng tâm cụa tam giác .Tính GA, GB, GC
Gọi `AM` là trung tuyến của `ΔABC`
`=>AM` đồng thời là đường cao
`=>ΔAMB;ΔAMC⊥M`
`AM` là trung tuyến nên
`BM=MC=(BC)/2=4(cm)`
Áp dụng định lý py-ta-go ta tính được
`AM^2=AB^2-BM^2=5^2-4^2=25-16=9(cm)`
`=>AM=3cm`
`G` trọng tâm
`=>GA=2/3AM=2cm`
`GM=1/3AM=1cm`
Áp dụng định lý py-ta-go lần nữa ta tính đc
`GC^2=BG^2=BM^2+GM^2=4^2+1^2=16+1=17cm`
`=>GB=GC=`\(\sqrt{17cm}\)
cho tam giác ABC . kẻ đường cao AM
a) Chứng Minh AM là Đường Trung Tuyến
b) Gọi G là Trọng Tâm Tam Giác ABC . Chứng Minh GB bàng Gc
Đề có sai không bạn , nếu `Delta ABC` là tam giác thường thôi thì không cm đc đâu ạ
cho g là trọng tâm của tam giác đều abc chứng minh rằng gb=gc =ga
Cho tam giác ABC có AB = AC =5cm; BC =8cm. Gọi G là trọng tâm cụa tam giác .Tính GA, GB, GC
Cho tam giác đều ABC. Gọi D là điểm bất kỳ trên AB. Đường thẳng qua D và song song với BC cắt AC tại E. Gọi G là trọng tâm tam giác ADE. a) Chứng minh GD = GE và GB = GC. b) Gọi I là trung điểm của CD. Chứng minh GIB d = 90◦
chứng minh gấp hộ tui với
Cho tam giác ABC:
a) Nếu G là trọng tâm tam giác ABC thì vecto GA+ vecto GB+ vecto GC= vecto 0
b) Nếu vecto IA+ vecto IB + vecto IC = vecto 0 thì I là trọng tâm tam giác ABC
TUI CẦN GẤP CHO BUỔI DỰ GIỜ NGÀY MAI NÊN AI ĐÓ GIÚP TUI ZỚIIII~~~
mk bận đi ch nên chỉ tạm câu a nha
vẽ 3 đường trung tuyến AD ; BE ; CF
VT =
\(GA+GB+GC\) ( nhớ thêm dấu vec tơ nha )
\(=-\frac{2}{3}AD-\frac{2}{3}BE-\frac{2}{3}CF\)
\(=-\frac{2}{3}\cdot\frac{1}{2}\left(AB+BC\right)-\frac{2}{3}\cdot\frac{1}{2}\left(BA+BC\right)-\frac{2}{3}\cdot\frac{1}{2}\left(CA+CB\right)\) ( quy tắc hình bình hành )
\(=-\frac{1}{3}\left(AB+AC\right)-\frac{1}{3}\left(BA+BC\right)-\frac{1}{3}\left(CA+CB\right)\)
\(=-\frac{1}{3}AB-\frac{1}{3}AC-\frac{1}{3}BA-\frac{1}{3}BC-\frac{1}{3}CA-\frac{1}{3}CB\)
\(=0=VP\)