cho hình thoi abcd có ah vuông góc với cd tại h, chứng minh rằng (ac.bd)/(ab.ah) =2
Cho hình thoi ABCD có AH vuông góc với CD tại H. Chứng minh rằng (ACBD)/(ABAH) = 2
cho hình bình hành ABCD kẻ AH vuông góc với DC tại H, AK vuông góc với BC tại K. chứng minh nếu AH=AK thì tứ giác ABCD là hình thoi
Xét ΔAHD vuông tại H và ΔAKB vuông tại K có
AH=AK
góc HAD=góc KAB
=>ΔAHD=ΔAKB
=>AD=AB
=>ABCD là hình thoi
Cho hình thoi ABCD, AH vuông góc với CD tại H và cắt BD tại I. Đường thẳng d đi qua I cắt các cạnh AD, AC lần lượt tại M và N. O là trung điểm của CD.
Giả sử IM=IN, chứng minh OI vuông góc với MN.
Bài 1:Cho hình thang ABCD có AB//CD , góc A=D=90 độ, AB=2cm,CD=4.5,BC=3. Chứng minh BC và BD vuông góc.
Bài 2: Cho hình bình hành ABCD. Vẽ AH vuông góc CD tại H,AK vuông góc BC tại K. Chứng minh tam giác KAH đồng dạng ABC
Mình đang cần gấp, giúp mình với !
Cho hình vuông ABCD. Trên tia đối của tia CD lấy điểm E bất kì sao cho CE<CD. Kẻ BM vuông góc với BE (M ϵ BE), BM cắt BC tại H, AH cắt BD tại I, AC cắt BD tại O. a) Chứng minh rằng EI vuông góc với BD. b) Chứng minh rằng MI là tia phân giác của góc BMD. c) Tìm vị trí điểm E sao cho tam giácc AMD có diện tích lớn nhất.
Cho hình vuông ABCD. Trên tia đối của tia CD lấy điểm E bất kì sao cho CE<CD. Kẻ BM vuông góc với BE (M ϵ BE), BM cắt BC tại H, AH cắt BD tại I, AC cắt BD tại O. a) Chứng minh rằng EI vuông góc với BD. b) Chứng minh rằng MI là tia phân giác của góc BMD. c) Tìm vị trí điểm E sao cho tam giác AMD có diện tích lớn nhất.
Hình thang ABCD(AB//CD) có AB=7cm,CD=10cm,AD=8cm và góc D=30độ.Kẻ AH vuông góc với CD tại H,kéo dài AH lấy E sao cho HE=HA 1.Chứng minh tam giác ADE đều 2.Tính AH,diện tích tam giác ADE và diện tích hình thang ABCD
1/
Xét tg vuông AHD và tg vuông EHD có
HA=HD (gt); DH chung => tg AHD = tg EHD (hai tg vuông có 2 cạnh góc vuông bằng nhau)
\(\Rightarrow\widehat{DAH}=\widehat{DEH}\)
Xét tg vuông AHD có
\(\widehat{DAH}=90^o-\widehat{ADH}=90^o-30^o=60^o\)
\(\Rightarrow\widehat{DAH}=\widehat{DEH}=60^o\)
Xét tg ADE có
\(\widehat{ADE}=180^o-\left(\widehat{DAH}+\widehat{DEH}\right)=180^o-\left(60^o+60^o\right)=60^o\)
\(\Rightarrow\widehat{DAH}=\widehat{DEH}=\widehat{ADE}=60^o\)
=> tg ADE là tg đều
2/
Xét tg vuông AHD có
\(AH=\dfrac{AD}{2}=\dfrac{8}{2}=4cm\) (trong tg vuông cạnh đối diện góc \(30^o\) bằng nửa cạnh huyền)
\(\Rightarrow AH=EH=4cm\Rightarrow AH+EH=AE=8cm\)
\(DH=\sqrt{AD^2-AH^2}=\sqrt{8^2-4^2}=4\sqrt{3}cm\) (Pitago)
\(\Rightarrow S_{ADE}=\dfrac{1}{2}.AE.DH=\dfrac{1}{2}.8.4\sqrt{3}=16\sqrt{3}cm^2\)
\(\Rightarrow S_{ABCD}=\dfrac{\left(AB+CD\right).AH}{2}=\dfrac{\left(7+10\right).4}{2}=34cm^2\)
Cho hình vuông ABCD. Lấy điểm E bất kì thuộc BC. Kẻ tia Ax vuông góc với AE cắt tia CD ở F. Gọi H là trung điểm của EF, AH cắt CD tại M.
a) Chứng minh tam giác AEF cân
b) Kẻ EK//CD (K thuộc AM). Chứng minh EKFM là hình thoi.
c) Chứng minh FA2 =CF.FM
cho hình thoi ABCD vẽ AH vuông góc với CD .AK vuông góc với BC a) chứng minh AH=AK b) biết góc D =60 cm tam giác HAK đều
hello mn, mk đang tìm ny, ai làm ny mk hông nè?
Cho hình thoi ABCD. Vẽ AH⊥BC tại H. chứng minh 2AH.BC=AC.BD
\(S_{ABC}=\dfrac{AH\cdot BC}{2}\)
=>\(S_{ABCD}=AH\cdot BC=\dfrac{AC\cdot BD}{2}\)
=>\(2\cdot AH\cdot BC=AC\cdot BD\)