phan tich da thuc thanh nhan tu
\(3-\sqrt{3}+15-3\sqrt{5}\)
Phan tich da thuc thanh nhan tu
\(x+3\sqrt{x}+2\)
\(2x+\sqrt{x}-3\)
\(x+\sqrt{x}+2\sqrt{x}+2\)
= \(\sqrt{x}\left(\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
= \(\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)\)
\(2x-2\sqrt{x}+3\sqrt{x}-3\)
= \(2\sqrt{x}\left(\sqrt{x}-1\right)+3\left(\sqrt{x}-1\right)\)
= \(\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)\)
phan tich da thuc thanh nhan tu
5x+ 7$\sqrt xy $ -6y+$\sqrt x $ - 2$\sqrt y $
\(\left(2x-10\right).\left(x+10\right).\left(x+\sqrt{3}\right)=0\)
(Bai phan tich da thuc thanh nhan tu)
PTĐTTNT ??? :)) bn phân tích rồi đấy, đề là tìm x thôi
Giải ( suỵt :), đừng ai nhìn thấy ... :v
\(\left(2x-10\right)\left(x+10\right)\left(x+\sqrt{3}\right)=0\)
TH1 : \(2x-10=0\Leftrightarrow x=5\)
TH2 : \(x+10=0\Leftrightarrow x=-10\)
TH3 : \(x+\sqrt{3}=0\Leftrightarrow x=-\sqrt{3}\)( vô lí )
Vậy x = {5;-10}
sao lại "vô lí" vậy bạn
lp 8 chưa học số vô tỉ babe nhá :))
\(7\sqrt{ab}+7b-\sqrt{a-}\sqrt{b}\)
phan tich da thuc thanh nhan tu
\(7\sqrt{ab}+7b-\sqrt{a}-\sqrt{b}\) =\(7\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)-\left(\sqrt{a}+\sqrt{b}\right)\) =\(\left(\sqrt{a}+\sqrt{b}\right)\left(7\sqrt{b}-1\right)\)
3.phan tich da thuc thanh nhan tu:
a.\(1+\sqrt{a}+\sqrt{b}+\sqrt{ab}\)
b.\(\sqrt{x}+\sqrt{y}+\sqrt{x^2y}+\sqrt{xy^2}\)
\(\left(1+\sqrt{a}\right)+\left(\sqrt{b}+\sqrt{ab}\right)=\left(1+\sqrt{a}\right)+\sqrt{b}\left(1+\sqrt{a}\right)=\left(1+\sqrt{a}\right)\left(1+\sqrt{b}\right)\)
\(b\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)\)
phan tich da thuc thanh nhan tu (x^2+2x+3).(2x^2+2x+5)-8
phan tich da thuc thanh nhan tu x^3 - 64
\(x^3-64=x^3-4^3\)
\(\Rightarrow\left(x-4\right)\left(x^2+4x+4^2\right)\)
Ta có:\(x^3-64\)
\(=x^3-4^3\)
Áp dụng hằng đẳng thức:\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\Rightarrow x^3-4^3=\left(x-4\right)\left(x^2+4x+4^2\right)\)
phan tich da thuc thanh nhan tu x^3 +y^3-z^3+3xyz
\(x^3+y^3+z^3-3xyz\) \(=\left(x+y\right)^3-3x^2y-3xy^2+z^2-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
HỌC TỐT NHA!
ta có:
x³ + y³ + z³ - 3xyz
= (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz)
- Hình như đề của u sai hay sao á :)))
phan tich da thuc thanh nhan tu :x^5+2x^4+3x^3+2x^2+2x+1
x^5+2x^4+2x^3+2x^2+2x+1
=(x^5+x^4)+(x^4+x^3)+(x^3+x^2)+(x^2+x)+(x+1)
=x^4(x+1)+x^3(x+1)+x^2(x+1)+x(x+1)+(x+1)
=(x+1)(x^4+x^3+x^2+x+1)