tính nguyên hàm của x^6
Câu 1 : Tính thể tích vật thể tròn xoay khi quay hình phẳng (H) giới hạn bởi các đường y = x3 , y = 0, x=0, x=1 quanh trục hoành
Câu 2 : Biết F(x) là một nguyên hàm của hàm f(x) = sin2x và F(π/4) = 1. Tính F(π/6)
1.
\(V=\pi\int\limits^1_0x^6dx=\dfrac{\pi x^7}{7}|^1_0=\dfrac{\pi}{7}\)
2.
\(F\left(x\right)=\int sin2xdx=-\dfrac{1}{2}cos2x+C\)
\(f\left(\dfrac{\pi}{4}\right)=1\Leftrightarrow-\dfrac{1}{2}cos\dfrac{\pi}{2}+C=1\Rightarrow C=1\)
\(\Rightarrow F\left(x\right)=-\dfrac{1}{2}cos2x+1\Rightarrow F\left(\dfrac{\pi}{6}\right)=\dfrac{3}{4}\)
Cho F(x) là một nguyên hàm của hàm số f(x) = xln x . Tính F''(x).
Cho F(x) là một nguyên hàm của hàm số f ( x ) = x ln x . Tính F’’(x)?
A. F ’ ’ ( x ) = 1 - ln x
B. F ’ ’ ( x ) = 1 x
C. F ’ ’ ( x ) = 1 + l n x
D. F ’ ’ ( x ) = x + ln x
Cho F(x) là một nguyên hàm của hàm số f(x)=x ln x Tính F ' ' x
A. F ' ' x = 1 − ln x
B. F ' ' x = 1 x
C. F ' ' x = 1 + ln x
D. F ' ' x = x + ln x
Đáp án C
Ta có F ' ' x = f ' x = 1 + ln x
tính nguyên hàm của hàm số f(x)=\(\dfrac{2x+1}{x^4+2x^3+x^2}\)
Cho hàm số F(x) là một nguyên hàm của hàm số f ( x ) = sin 3 x . cos x . Tính I = F π 2 - F ( 0 )
Cho hàm số F(x) là một nguyên hàm của hàm số f ( x ) = sin 3 x cos x . Tính I = F ( π 2 ) - F ( 0 )
A. I = π 2
B. I = 1 4
C. I = 3 π 2
D. I = 3 4
Cho F ( x ) = 1 2 x 2 là một nguyên hàm của hàm số f ( x ) x . Tính I = ∫ 1 e f ' ( x ) ln x d x :
A. I = 3 − e 2 2 e 2
B. I = e 2 − 3 2 e 2
C. I = 2 − e 2 e 2
D. I = e 2 − 2 e 2
f(x)=4sin2x.cos2x.sinx=4(1-cos2x)cos2x.sinx=(4cos4x-4cos2x)(-sinx)
Đặt u=cosx ---> F(x)=(4/5)cos5x-(4/3)cos3x+C