xác định a,b,c,d thỏa mản đẳng thức (x^3-3x+2)(x^2+cx+d)= x^4 + ax^2+b
Xác định a,b,c,d thỏa mãn đẳng thức với mọi x
a,\(\left(ax+b\right)\left(x^2+cx+1\right)=7x^3-3x+2\)
b, \(x^4+ax^2+b=\left(x^2-3x+2\right)\left(x^2+cx+d\right)\)
Xác định a,b,c,d thỏa mãn đẳng thức.
a)(ax+b)(x^2+cx+1)=x^3-3x+2.
b) x^4+ax^2+b=(x^3-3x+2)(x^2+cx+d)
Xác định a,b,c,d để các đẳng thức sau thỏa mãn với mọi x:
a)x^4+ax^2+b=(x^2-3x+2)(x^2+cx+d)
b) (ax^2+bx+c)(x+3)=x^3+2x^2-3x.
c)x^4+x^3-x^2+ax+b=(x^2+x-2)(x^2+cx+d)
Xác định a,b,c,d thỏa mãn trong các đẳng thức sau với mọi giá trị của x:
a) ( ax + b)( x2 + cx + 1 ) = x3 - 3x + 2
b) x4 + ax2 + b = ( x2 - 3x + 2 )( x2 + cx + d )
Xác định a,b,c,d thỏa mãn 1 trong những đẳng thức sau với mọi x:
x^4+ ax^2+ b= (x^2- 3x+ 2).(x^2- cx+ d)
(sử dụng đa thức đồng nhát bằng nhau)
Ta có: \(x^4+ax^2+b\) = \(\left(x^2-3x+2\right).\left(x^2-cx+d\right)\)
Xét VP, ta có:
\(\left(x^2-3x+2\right).\left(x^2-cx+d\right)\)
\(=x^4-cx^3+dx^2-3x^3+3cx^2-3dx+2x^2-2cx+2d\)
\(=x^4-x^3.\left(c+3\right)+x^2.\left(d+3c+2\right)-x.\left(3d+2c\right)+2d\)
Đồng nhất hai đa thức \(x^4-x^3.\left(c+3\right)+x^2.\left(d+3c+2\right)-x.\left(3d+2c\right)+2d\)và \(x^4+ax^2+b\), suy ra:
\(\left\{{}\begin{matrix}c+3=0\\d+3c+2=a\\3d+2c=0\\2d=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}c=-3\\d-7=a\\d=2\\b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}c=-3\\a=-5\\d=2\\b=4\end{matrix}\right.\)
Vậy a=-5 ; b=4 ; c=-3 ; d=2
Bài 1) Xác định hệ số a,b,c,d thỏa mãn các hệ thức sau với mọi giá trị của x
a) x^4+x^3-x^2+ax+b=(x^2+x-2).(x^2+cx+d)
b) x^3-ax^2+bx-c=(x-a).(x-b.(x-c)
Xin mọi ngườ hãy giúp tui ai trả lời nhanh nất tui sẽ h cho làm ơn tui đang cần gấp
pp U.C.T @ nỗi ám ảnh là đây
\(RHS=x^4+\left(c+1\right)x^3+\left(d+c-2\right)x^2+\left(d-2c\right)x-2d\)
Sử dụng pp U.C.T ta có hệ sau : \(\hept{\begin{cases}c+1=1\\d+c-2=-1\\d-2c=a-and--2d=b\end{cases}< =>\hept{\begin{cases}c=0\\d=1\\a=1andb=-2\end{cases}}}\)
câu b để tí nx mình làm nốt
Xác định a,b,c,d thỏa mãn đắng thức sau với mọi giá trị của x:
(ax + b)(x2 + cx + 1) = x3 - 3x + 2
= \(ax^3+acx^2+ax+bx^2+bcx+b\) =>\(\hept{\begin{cases}a=1\\ac+b=0\\a+bc=2;b=2\end{cases}}=>\hept{\begin{cases}a=1\\b=2\\c=-2\end{cases}}\)
( ax + b )( x2 + cx + 1 ) = x3 - 3x + 2
<=> ax( x2 + cx + 1 ) + b( x2 + cx + 1 ) = x3 - 3x + 2
<=> ax3 + acx2 + ax + bx2 + bcx + b = x3 - 3x + 2
<=> ax3 + ( ac + b )x2 + ( a + bc )x + b = x3 - 3x + 2
<=> \(\hept{\begin{cases}a=1\\ac+b=0\\a+bc=-3\end{cases}}\)và b = 2
<=> \(\hept{\begin{cases}a=1\\b=2\\c=-2\end{cases}}\)
a)xác định a để nghiệm của đa thức f x = ax - 4 Cũng là nghiệm của đa thức g(x) = x^2 trừ x = 2 .
b)cho f(x) = ax^3 = bx^2 = cx = d trong đó A,B,C,D là hàm số và thỏa mãn b + 3 a + c. chứng tỏ rằng F(1) = F (-2)
xác định a,b,c thõa mãn đẳng thức sau với mọi giá trị của x
(ax+b)(x^2+cx+1)=x^3-3x+2
(ax+b)(x2+cx+1)=x3-3x+2
ax3+acx2+ax+bx2+cbx+b=x3-3x+2
ax3+(acx2+bx2)+(ax+cbx)+b=X3-3x+2
ax3+x2(ac+b)+x(a+cb)+b=x3+0x2-3x+2
Đồng nhất các hệ số hai vế của đẳng thức,ta có:(dùng dấu ngoặc nhọn nha bạn)
a=1 a=1
ac+b=0 =>(dấu ngoặc nhọn) c=-2
a+cb=-3 b=2
b=2 (cái tính kết quả bạn có thế tính rõ hơn,mình làm hơi tắt)
Vậy a=1,b=2,c=-2 thì thỏa mãn đẳng thức đã cho
(Nếu không hiểu các bạn có thể xem trên google chuyên dề phương pháp hệ số bất định của bài phân tích đa thức thành nhân tử)
( ax + b )( x2 + cx + 1 ) = x3 - 3x + 2
<=> ax( x2 + cx + 1 ) + b( x2 + cx + 1 ) = x3 - 3x + 2
<=> ax3 + acx2 + ax + bx2 + bcx + b = x3 - 3x + 2
<=> ax3 + ( ac + b )x2 + ( a + bc )x + b = x3 - 3x + 2
<=> \(\hept{\begin{cases}a=1\\ac+b=0\\a+bc=-3\end{cases}}\)và b = 2
<=> \(\hept{\begin{cases}a=1\\b=2\\c=-2\end{cases}}\)