Ta có: \(x^4+ax^2+b\) = \(\left(x^2-3x+2\right).\left(x^2-cx+d\right)\)
Xét VP, ta có:
\(\left(x^2-3x+2\right).\left(x^2-cx+d\right)\)
\(=x^4-cx^3+dx^2-3x^3+3cx^2-3dx+2x^2-2cx+2d\)
\(=x^4-x^3.\left(c+3\right)+x^2.\left(d+3c+2\right)-x.\left(3d+2c\right)+2d\)
Đồng nhất hai đa thức \(x^4-x^3.\left(c+3\right)+x^2.\left(d+3c+2\right)-x.\left(3d+2c\right)+2d\)và \(x^4+ax^2+b\), suy ra:
\(\left\{{}\begin{matrix}c+3=0\\d+3c+2=a\\3d+2c=0\\2d=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}c=-3\\d-7=a\\d=2\\b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}c=-3\\a=-5\\d=2\\b=4\end{matrix}\right.\)
Vậy a=-5 ; b=4 ; c=-3 ; d=2