Bài 1:
1) \(a\left(b-c\right)+b\left(c-a\right)+c\left(a-b\right)\)
\(=ab-ac+bc-ba+ca-cb\)
\(=0\)
2) \(a\left(bz-cy\right)+b\left(cx-az\right)+c\left(ay-bx\right)\)
\(=abz-acy+bcx-baz+cay-cbx\)
\(=0\)
Bài 2:
Ta có:
\(\dfrac{x^2+ax+ab+bx}{3bx-a^2-ax+3ab}\)
\(=\dfrac{\left(x^2+bx\right)+\left(ax+ab\right)}{\left(3bx-ax\right)+\left(3ab-a^2\right)}\)
\(=\dfrac{x\left(x+b\right)+a\left(x+b\right)}{x\left(3b-a\right)+a\left(3b-a\right)}\)
\(=\dfrac{\left(x+a\right)\left(x+b\right)}{\left(x+a\right)\left(3b-a\right)}\)
\(=\dfrac{x+b}{3b-a}\)