Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đan Linh
Xem chi tiết
chuche
10 tháng 4 2022 lúc 20:26

tham khảo:

 <=> 2x^2+3y^2+4x -19 =0

<=> 2.(x2 + 2x +1) + 3.y2 = 21

<=> 2.(x+1)2 + 3. y2 = 21

Vì 3y2; 21 đều chia hết cho 3 nên 2.(x +1)2 chia hết cho 3 . hơn nữa 2. (x +1)2 ≤≤≤ 21 và (x+1)2 là số chính phương

=> (x+1)2 =0 hoặc  9 

+) x + 1 = 0 => x = -1 => y 2 = 7 => loại

+) (x+1)= 9 => y= 1

=> x+ 1 = 3 hoặc x+ 1=- 3 => x = 2 hoặc x = -4

y2 = 1 => y = 1 hoặc y = -1

Vậy....

Hoàng Yến
Xem chi tiết
giang ho dai ca
21 tháng 5 2015 lúc 19:05

\(\Leftrightarrow4x^2+8x+4=42-6y^2\)

\(\Rightarrow\left(2x+2\right)^2=6\left(7-y^2\right)\)

Vì \(\left(2x+2\right)^2\ge0\)  \(\Rightarrow7-y^2\ge0\)\(\Rightarrow y^2\le7\)

Mà \(y\in Z\)  \(\Rightarrow y=0\); +-1 ; +-2 \(\Rightarrow\) các gt tương ứng của x

đúng nha

bài này cũng dễ

Nguyễn Ngô Minh Trí
3 tháng 11 2017 lúc 17:18

cảm ơn bạn đã giúp 

thanks

k tui nha

Cao Phạm Thùy Linh
15 tháng 11 2017 lúc 21:15

cách giải hay, tks bạn!!

lê thanh tùng
Xem chi tiết
loancute
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 3 2021 lúc 20:57

\(\Leftrightarrow\left(2x^2-3\right)y=x^2+1\)

\(\Leftrightarrow y=\dfrac{x^2+1}{2x^2-3}\)

\(y\in Z\Rightarrow2y\in Z\Rightarrow\dfrac{2x^2+2}{2x^2-3}\in Z\Rightarrow1+\dfrac{5}{2x^2-3}\in Z\)

\(\Rightarrow2x^2-3=Ư\left(5\right)=\left\{-1;1;5\right\}\)

\(\Rightarrow x^2=\left\{1;2;4\right\}\Rightarrow x=\left\{1;2\right\}\)

- Với \(x=1\Rightarrow y=-2< 0\left(loại\right)\)

- Với \(x=2\Rightarrow y=1\)

Vậy \(\left(x;y\right)=\left(2;1\right)\)

Tiếng anh123456
Xem chi tiết
hoàng thị huyền trang
Xem chi tiết
Xem chi tiết
Edogawa Conan
8 tháng 6 2020 lúc 23:03

Ta có: 2x2y - 1 = x2 + 3y

<=> 4x2y - 2 - 2x2 - 6y = 0

<=> 2x2(2y - 1) - 3(2y - 1) = 5

<=> (2x2 - 3)(2y - 1) = 5 = 1.5

Lập bảng:

2x2 - 3 1 5
 2y - 1 5 1
  x\(\pm\sqrt{2}\)(loại)2
  y  1

Vậy nghiệm (x;y) của phương trình là (2; 1)

Khách vãng lai đã xóa

\(2x^2y-1=x^2+3y\)

\(\Leftrightarrow4x^2y-2=2x^2+6y\)

\(\Leftrightarrow\left(2y-1\right)\left(2x^2-3\right)=5\)

Đến đây đơn giản rồi :))))

Khách vãng lai đã xóa
Khôi 2k9
Xem chi tiết
Nguyễn Linh Chi
27 tháng 10 2020 lúc 9:02

\(2x^2+3y^2+4x=19\)

<=> \(2\left(x^2+2x+1\right)+3y^2=21\)

<=> \(2\left(x+1\right)^2+3y^2=21\)

<=> \(2\left(x+1\right)^2=21-3y^2\ge0\)

=> \(y^2\le7\)(1) 

Mặt khác \(2\left(x+1\right)^2=21-3y^2⋮2\)

=> 21 - 3y^2 là số chẵn  => 3y^2 là số lẻ => y^2 là số chính phương lẻ  (2) 

Từ (1) và (2) => y = 1 hoặc y = - 1=> y^2 = 1 

=> 2 (x + 1)^2 = 18 <=> (x + 1 ) = 9 <=> x + 1 = 3 hoặc x + 1 = - 3 <=> x = 2 hoặc x = -4

Vậy phương trình có 4 nghiệm ( 2; 1) (2; -1); (-4; 1 ); (-4; -1)

Khách vãng lai đã xóa
Pé Lùn
Xem chi tiết
hoàng thị huyền trang
Xem chi tiết
Nguyễn Xuân Anh
10 tháng 2 2018 lúc 1:38

Ta có:

2x2+3y2+4x=19 ⇔ 2x2+4x=19−3y2 ⇔ 2x2+4x+2=21−3y2 ⇔ 2(x+1)2=3(7−y2) (*)

Vì 2(x+1)2 chia hết cho 2 nên 3(7−y2) chia hết cho 2,

hay 7−y2 chia hết cho 2 ,

hay y2 lẻ (1)

Lại có: 7−y2≥0 (do (x+1)2≥0) nên y2≤7 (với y∈Z ), tức là y2∈{1;4} (2)

Từ (1);(2) , suy ra y2=1 ⇒ y∈{−1;1}

Khi đó, phương trình (*) sẽ có dạng 2(x+1)2=18 ⇔ (x+1)2=9 ⇔ x+1=3x+1=−3 ⇔ x=2x=−4

Vậy, các cặp nghiệm nguyên phải tìm: (x;y)={(2;1),(2;−1),(−4;1),(−4;−1)} (thỏa mãn x,y∈Z )

nguyenvankhoi196a
12 tháng 3 2018 lúc 16:36

Ta có:
2x2+3y2+4x=19 ⇔ 2x2+4x=19−3y2 ⇔ 2x2+4x+2=21−3y2 ⇔ 2(x+1)2=3(7−y2
) (*)
Vì 2(x+1)2
 chia hết cho 2 nên 3(7−y2
) chia hết cho 2,
hay 7−y2
 chia hết cho 2 ,
hay y2
 lẻ (1)
Lại có: 7−y2≥0 (do (x+1)2≥0) nên y2≤7 (với y∈Z ), tức là y2∈{1;4} (2)
Từ (1);(2) , suy ra y2=1 ⇒ y∈{−1;1}
Khi đó, phương trình (*) sẽ có dạng 2(x+1)2=18 ⇔ (x+1)2=9 ⇔ x+1=3x+1=−3 ⇔ x=2x=−4
Vậy, các cặp nghiệm nguyên phải tìm: (x;y)={(2;1),(2;−1),(−4;1),(−4;−1)} (thỏa mãn x,y∈Z )

:3