tìm giá trị nhỏ nhất của biểu thức
A = (x + 3y - 5 )2 - 6xy + 26
Tìm Dùm Mình Giá Trị Nhỏ Nhất Của Biểu Thức Sau:
A=(x+3y-5)^2-6xy+26
A = \(x^2+9y^2+25+6xy-30y-10x-6xy+26\)
= \(x^2-10x+25+9y^2-30y+25+1\)
= \(\left(x-5\right)^2+\left(3y-5\right)^2+1\)
Có : \(\left(x-5\right)^2\ge0\forall x;\left(3y-5\right)^2\ge0\forall y\)
\(\Rightarrow A\ge1\)
Vậy GTNN của A là 1 \(\Leftrightarrow\hept{\begin{cases}x-5=0\\3y-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=\frac{5}{3}\end{cases}}}\)
Tìm giá trị nhỏ nhất , lớn nhất của các biểu thức sau :
a , \(C=6xy-\left(x+3y-5\right)^2-26\)
b, \(D=\left(x+3y-5\right)^2-6xy+26\)
Tìm giá trị nhỏ nhất
M = (x+3y+5)^2-6xy+26
(x+3y-5)^5 -6xy+26
tìm giá trị nhỏ nhất
Bài 1: Tìm giá trị nhỏ nhất của biểu thức
a, M= x2-10x+3
b, N= x2-x+2
c, P=3x2-12x
Bài 2: Tìm giá trị nhỏ nhất của biểu thức
a, M= 2x2-4x+3
b, N= x2-4x+5+y2+2y2
MONG MN GIÚP ĐỠ :3
Bài 1:
a: \(M=x^2-10x+3\)
\(=x^2-10x+25-22\)
\(=\left(x^2-10x+25\right)-22\)
\(=\left(x-5\right)^2-22>=-22\forall x\)
Dấu '=' xảy ra khi x-5=0
=>x=5
b: \(N=x^2-x+2\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi x-1/2=0
=>x=1/2
c: \(P=3x^2-12x\)
\(=3\left(x^2-4x\right)\)
\(=3\left(x^2-4x+4-4\right)\)
\(=3\left(x-2\right)^2-12>=-12\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
a) tìm giá trị nhỏ nhất của biểu thức: A=\(x^2+xy+y^2-3x-3y+2004\)
b) TÌm giá trị nhỏ nhất của biểu thức: A=\(2x^2+9y^2-6xy-6x-12y+2006\)
c) Tìm min của y=\(\frac{x^4+x^2+5}{x^4+2x^2+1}\)
Tìm giá trị nhỏ nhất của biểu thức
A = x2 - 8x + 5
\(A=x^2-8x+5\)
\(=\left(x^2-8x+16\right)-11\)
\(=\left(x-4\right)^2-11\)
\(=-11+\left(x-4\right)^2\)
Vì \(\left(x-4\right)^2\) ≥ 0
⇒ A ≥ -11
Min A=-11 ⇔\(x-4=0\)
⇔\(x=4\)
Tìm giá trị nhỏ nhất
\(A=x^2-4x\)
\(B=x^2+x+1\)
\(C=\left(x+3y-5\right)^2-6xy+26\)
help me ???
Ta có:\(A=x^2-4x\)
\(A=x^2-4x+4-4\)
\(A=\left(x-2\right)^2-4\le-4\)
Dấu = xảy ra khi x - 2 = 0 ; x = 2
Vậy Min A = - 4 khi x = 2
Ta có:\(B=x^2+x+1\)
\(B=x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(B=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu = xảy ra khi \(x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)
Vậy MIn B = 3/4 khi x=-1/2
Ta có:\(C=\left(x+3y-5\right)^2-6xy+26\)
\(C=x^2+9y^2+25+6xy-10x-30y-6xy+26\)
\(C=x^2+9y^2-10x-30y+51\)
\(C=x^2-10x+25+9y^2-30y+25+1\)
\(C=\left(x-5\right)^2+\left(3y-5\right)^2+1\ge1\)
Dấu = xảy ra khi \(x-5=0;3y-5=0\Rightarrow x=5;y=\frac{5}{3}\)
Vậy Min C = 1 khi x=5;y=5/3
C= (x+3y-5)2 - 6xy + 26
= x2 + (3y)2 - 25 - 6xy + 26
= x2 - 6xy + (3y)2 + (-25+26)
= x2 - 2.x.3y + (3y)2 + 1
= (x-3y)2 + 1
Vì (x-3y)2 luôn > hoặc = 0
=) (x-3y)2 + 1 luôn > hoặc = 1
vậy GTNN của C là 1
1) rút gọn biểu thức
a) (x2- 5)-(x+7)(x-7)
b)(2x+3y)2+(3x-2y)2-2(2x+3y)(2x+3y93x-2y)
2) tìm giá trị biểu thức
A= x3+3x2+3x+1 tại x = 99
mn giúp mình lẹ đi đang gấp