(1-1/2).(1-1/3). ... .(1-1/2022).x=1-1/1.2-1/2.3-...-1/2002*2003
(1-1/2).(1-1/3).(1-1/4)...(1-1/2002).x=1-1/1.2-1/2.3-1/3.4-...-1/2002.2003
(1-1/2).(1-1/3).(1-1/4)...(1-1/2002).x=1-1/1.2-1/2.3-1/3.4-...-1/2002.2003 ghi loi giai nha ae
\(\dfrac{1}{1.2}+\dfrac{2}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x.(x+1)}=\dfrac{2021}{2022}\)
\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2021}{2022}\)
\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{2021}{2022}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2022}\)
=>x+1=2022
hay x=2021
1/1.2+1/2.3+1/3.4+...+1/x.(x+1)=2022/2021
giúp mk với mn oiiiiiiiiiiiiii !!!!!!!!!!!!!!!!!
=>1-1/2+1/2-1/3+...+1/x-1/(x+1)=2022/2021
=>1-1/(x+1)=2022/2021
=>1/(x+1)=-1/2021=1/-2021
=>x+1=-2021
=>x=-2022
So sánh A=2021/2022 và B=1/1.2+1/2.3+1/3.4+2...+1/97.98+1/98.99
\(B=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}\)
\(=\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{99-98}{98.99}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}\)
\(=1-\dfrac{1}{99}\)
\(A=\dfrac{2021}{2022}=\dfrac{2022-1}{2022}=1-\dfrac{1}{2022}\)
Có \(2022>99>0\Leftrightarrow\dfrac{1}{99}>\dfrac{1}{2022}\)
Suy ra \(A>B\).
10.4. Tính tổng
a) \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)
b) \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\)
c) \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) +...........\(\dfrac{1}{99.100}\)
d) \(\dfrac{3}{1.2}\) + \(\dfrac{3}{2.3}\) +.........\(\dfrac{1}{99.100}\)
giúp em
a)
`1/1-1/2`
`=2/2-1/2`
`=1/2`
b)
`1/(1*2)+1/(2*3)`
`=1/1-1/2+1/2-1/3`
`=1/1-1/3`
`=3/3-1/3`
`=2/3`
c)
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\dfrac{1}{1}-\dfrac{1}{100}\\ =\dfrac{99}{100}\)
d)
\(\dfrac{3}{1\cdot2}+\dfrac{3}{2\cdot3}+...+\dfrac{3}{99\cdot100}\) đề phải như thế này chứ nhỉ?
\(=\dfrac{1\cdot3}{1\cdot2}+\dfrac{1\cdot3}{2\cdot3}+...+\dfrac{1\cdot3}{99\cdot100}\\ =3\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{100}\right)\\ =3\cdot\dfrac{99}{100}\\ =\dfrac{297}{100}\)
(2001/2002 +2002/2003 + 2003/2004) x(1/3 - 1/4 - 1/12)
thực sự bạn có thể bấm máy tính đó đồ ngốc, ahihi
Với lại đây là toán hsg, vào phòng thi ngta cho mang máy tính à
1/1.2+1/2.3+1/3.4+...+1/x(x+1)=2/3
Ta có: 1/1.2+1/2.3+1/3.4+...+1/x(x+1)=2/3
=> 1-1/2+1/2-1/3+1/3-1/4+...+1/x-1/x+1=2/3
=>1-1/x+1=2/3
=>1/x+1=1/3
=>3=x+1
=>x=2
Ta có\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{x\left(x+1\right)}=\frac{2}{3}\)
=>\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2}{3}\)
=>\(1-\frac{1}{x+1}=\frac{2}{3}\)
=>\(\frac{1}{x+1}=1-\frac{2}{3}\)
=>\(\frac{1}{x+1}=\frac{1}{3}\)
=>\(x+1=3\)
=>\(x=2\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{2}{3}\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x-1}=\frac{2}{3}\)
\(\Rightarrow1-\frac{1}{x-1}=\frac{2}{3}\)
\(\Rightarrow\frac{1}{3}=\frac{1}{x-1}\)
\(\Rightarrow x=3+1=4\)
(1/2003+1/2004-1/2005)/(5/2003+5/2004-5/2005)-(2/2002+2/2003-2/2004)/(3/2002+3/2003-3/2004)
A=1/1.2+1/2.3+1/3..............+1/99.100 B=(1-1/2).(1-1/3).(1-1/4).(1-1/5)............(1-1/2003).(1-1/2004)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{2003}\right).\left(1-\frac{1}{2004}\right)\)
\(B=\frac{1}{2}.\frac{2}{3}.....\frac{2002}{2003}.\frac{2003}{2004}\)
\(B=\frac{1.2.....2002.2003}{2.3.....2003.2004}\)
\(B=\frac{1}{2004}\)
Ủng hộ mk nha !!! ^_^
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).\left(1-\frac{1}{5}\right)...\left(1-\frac{1}{2003}\right)\)\(.\left(1-\frac{1}{2004}\right)\)
\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{2002}{2003}.\frac{2003}{2004}\)
Ta thấy cả tử và mẫu số đều giống nhau từ \(2\)đến \(2003\) nên có thể triệt tiêu được cho nhau và còn thừa lại \(\frac{1}{2004}\) nên \(\Rightarrow B=\frac{1}{2004}\)