chứng minh rằng:2007^5+2014^4-2013^13 chia hết cho 10
a, Tính S = 4 + 7 + 10 + 13 + ...... + 2014
b, Chứng minh rằng n.( n + 2013 ) chia hết cho 2 với mọi số tự nhiên n
c, Cho M = 2 + 22 + 23 + ....+ 220 Chứng tỏ rằng M chia hết cho 5
Bạn tham khảo ở đây: Câu hỏi của phương vy - Toán lớp 6 - Học toán với OnlineMath
a) tính S = 4+7+10+13+...+2014
b) chứng minh rằng n . (n+2013) chia hết cho 2 với mọi số tự nhiên n .
a)Tính S=4+7+10+13+..........+2014
b)Chứng minh rằng n.(n+2013) chia hết cho 2 với mọi số tự nhiên n
c)Cho M=2+\(2^2\)+\(2^3\)+........+\(2^{20}\) Chứng tỏ rằng M chia hết cho 5
a) tổng S bằng
(2014+4).671:2=677 039
b)n.(n+2013) để mọi số tự nhiên n mà tổng trên chia hét cho 2 thì n=2n
→2n.(n+2013)\(⋮̸\)2
C)M=2+22+23+...+220
=(2+22+23+24)+...+(217+218+219+220)
=(2+22+23+24)+...+(216.2+216.22+216+23+216.24)
=30.1+...+216.(2+22+23+24)
=30.1+...+216.30
=30(1+25+29+213+216)\(⋮\)5
c, M= 2 + 22 + 23 +........220
Nhận xét: 2+ 22 + 23 + 24 = 30; 30 chia hết cho 5
Khi đó: M = ( 2+22 + 23 + 24 ) + (25 + 26 + 27 + 28)+.....+ (217+218+219+220)
= ( 2+22 + 23 + 24 ) + 24. ( 2+22 + 23 + 24 ) +...........+216 .( 2+22 + 23 + 24 )
= 30+24 .30 + 28. 30 +.........+ 216.30
= 30.(24 + 28 +.........+216) chia hết cho 5 và 30 chia hết cho 5
Vậy M chia hết cho 5
chứng minh rằng
1. (10^10 +10^16+ 10^17)chia hết cho 555
2.(84^7- 27^9 -9^13) chia hết cho 15
3. (5^7-5^6+5^5)chia hết cho 21
4. (7^6+7^5-7^4) chia hết cho 77
5.(4^13+ 32^5-8^8) chia hết cho 5
6.(2006^1000 +2006^999) chia hết cho 2007
7.(43^43 -17^17) chia hết cho 10
8. (7^1000- 3^1000) chia hết cho 10
9( 3^2016 +3^ 2015 - 3^2014)chia hết cho 11
10.(36^36 -9^10)chia hết cho 45
Câu 3,57-56+55=55.52-55.5+55=55.(52-5+1)=55.21 chia hết cho 21
Câu:4:76+75-74=74.72+74.7-74=74.(72+7-1)=74.55=74.11.5=73.7.11.5=73.77.5 chia hết cho 77
Các câu khác tương tự
bạn biết làm hết rồi, chỉ còn câu 2 chưa làm được đúng ko, vậy mình làm cho nhé, nhưng mà mình nghĩ là đề là 81 chứ ko phải 84 đâu
\(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}=3^{25}\left(3^3-3^2-3\right)=3^{25}.15\) chia hết cho 15
Vậy 817-279-913 chia hết cho 15 (đpcm)
chứng minh rằng
1. (10^10 +10^16+ 10^17)chia hết cho 555
2.(84^7- 27^9 -9^13) chia hết cho 15
3. (5^7-5^6+5^5)chia hết cho 21
4. (7^6+7^5-7^4) chia hết cho 77
5.(4^13+ 32^5-8^8) chia hết cho 5
6.(2006^1000 +2006^999) chia hết cho 2007
7.(43^43 -17^17) chia hết cho 10
8. (7^1000- 3^1000) chia hết cho 10
9( 3^2016 +3^ 2015 - 3^2014)chia hết cho 11
10.(36^36 -9^10)chia hết cho 45
3: \(=5^5\left(5^2-5+1\right)=5^2\cdot21⋮21\)
4: \(=7^4\left(7^2+7-1\right)=7^4\cdot55=7^3\cdot5\cdot77⋮77\)
5: \(=\left(2^{26}+2^{25}-2^{24}\right)=2^{24}\left(2^2+2-1\right)=2^{24}\cdot5⋮5\)
Chứng minh rằng 1 . 3 . 5. ... . 2013 . 2015 + 2 . 4 . 6 . ... . 2014 . 2016 chia hết cho 9911
Ta có 9911 = 11 . 17 . 53 . Trong mỗi tích đều có các thừa số đó :
- Tích các số lẻ có chứa các số 11 ; 17 ; 53
- Tích các số chẵn có các số 22 ; 34 ; 106 lần lượt là bội của các số 11 ; 17 ; 53
=> Tổng hai tích chia hết cho 9911.
chung ming rang:
2007 2+2014 4-2013 13 chia het cho 10
chứng minh rằng 2013^2014+2011^2012 chia hết cho 10
ta có: 3^2014=(3^2)^1007=9^1007=......9
1^2012=.....1
=>2013^2014+2011^2012=....9+....1=........0 chia hết 10
vậy 2013^2014+2011^2012 chia hết 10
Chứng minh rằng:
5) ( 4^13+ 32^5- 8^8) chia hết cho 5
6) ( 2006^1000+ 2006^999) chia hết cho 2007
5) 413+325-88 =(22)13+(25)5-(23)8 =226+225-224 =224(22+2-1) =224.5 chia hết cho 5
6) \(2006^{1000}+2006^{999}=2006^{999}.\left(2006+1\right)=2006^{999}.2007\) chia hêt cho 2007