\(\int\limits\sqrt{\dfrac{2+x}{2-x}}^{ }_{ }dx\)
Hãy chỉ ra kết quả nào dưới đây đúng :
a) \(\int\limits^{\dfrac{\pi}{2}}_0\sin xdx+\int\limits^{\dfrac{3\pi}{2}}_{\dfrac{\pi}{2}}\sin xdx+\int\limits^{2\pi}_{\dfrac{3\pi}{2}}\sin xdx=0\)
b) \(\int\limits^{\dfrac{\pi}{2}}_0\left(\sqrt[3]{\sin x}-\sqrt[3]{\cos x}\right)dx=0\)
c) \(\int\limits^{\dfrac{1}{2}}_{-\dfrac{1}{2}}\ln\dfrac{1-x}{1+x}dx=0\)
d) \(\int\limits^2_0\left(\dfrac{1}{1+x+x^2+x^3}+1\right)dx=0\)
Tính các tích phân sau :
a) \(\int\limits^1_0\left(y^3+3y^2-2\right)dy\)
b) \(\int\limits^4_1\left(t+\dfrac{1}{\sqrt{t}}-\dfrac{1}{t^2}\right)dt\)
c) \(\int\limits^{\dfrac{\pi}{2}}_0\left(2\cos x-\sin2x\right)dx\)
d) \(\int\limits^1_0\left(3^s-2^s\right)^2ds\)
e) \(\int\limits^{\dfrac{\pi}{3}}_0\cos3xdx+\int\limits^{\dfrac{3\pi}{2}}_0\cos3xdx+\int\limits^{\dfrac{5\pi}{2}}_{\dfrac{3\pi}{2}}\cos3xdx\)
g) \(\int\limits^3_0\left|x^2-x-2\right|dx\)
h) \(\int\limits^{\dfrac{5\pi}{4}}_{\pi}\dfrac{\sin x-\cos x}{\sqrt{1+\sin2x}}dx\)
i) \(\int\limits^4_0\dfrac{4x-1}{\sqrt{2x+1}+2}dx\)
Câu nào mình biết thì mình làm nha.
1) Đổi thành \(\dfrac{y^4}{4}+y^3-2y\) rồi thế số.KQ là \(\dfrac{-3}{4}\)
2) Biến đổi thành \(\dfrac{t^2}{2}+2\sqrt{t}+\dfrac{1}{t}\) và thế số.KQ là \(\dfrac{35}{4}\)
3) Biến đổi thành 2sinx + cos(2x)/2 và thế số.KQ là 1
Tính :
a) \(\int\limits^2_{-1}\left(5x^2-x+e^{0,5x}\right)dx\)
b) \(\int\limits^2_{0,5}\left(2\sqrt{x}+\dfrac{3}{x^2}+\cos x\right)dx\)
c) \(\int\limits^2_1\dfrac{dx}{\sqrt{2x+3}}\) (đặt \(t=\sqrt{2x+3}\) )
d) \(\int\limits^2_1\sqrt[3]{3x^3+4}x^2dx\) (đặt \(t=\sqrt[3]{3x^3+4}\) )
e) \(\int\limits^2_{-2}\left(x-2\right)\left|x\right|dx\)
g) \(\int\limits^0_1x\cos xdx\)
h) \(\int\limits^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}\dfrac{1+\sin2x+\cos2x}{\sin x+\cos x}dx\)
i) \(\int\limits^{\dfrac{\pi}{2}}_0e^x\sin xdx\)
k) \(\int\limits^e_1x^2\ln^2xdx\)
chứng minh:
\(\int\limits^1_0\dfrac{ln\left(x+\sqrt{1-x^2}\right)}{x}dx=\dfrac{3}{4}\int\limits\dfrac{ln\left(1+x\right)}{x}^1_0dx\)
Tính các tích phân sau :
a) \(\int\limits^4_{-2}\left(\dfrac{x-2}{x+3}\right)^2dx\) (đặt \(t=x+3\) )
b) \(\int\limits^6_{-4}\left|x+3\right|-\left|x-4\right|dx\)
c) \(\int\limits^2_{-3}\dfrac{dx}{\sqrt{x+7}+3}\) (đặt \(t=\sqrt{x+7}\) hoặc \(t=\sqrt{x+7}+3\) )
d) \(\int\limits^{\dfrac{\pi}{2}}_0\dfrac{\cos x}{1+4\sin x}dx\)
e) \(\int\limits^2_1\dfrac{x^9}{x^{10}+4x^5+4}dx\) (đặt \(t=x^5\) )
g) \(\int\limits^3_0\left(x+2\right)e^{2x}dx\)
h) \(\int\limits^5_2\dfrac{\sqrt{4+x}}{x}dx\) (đặt \(t=\sqrt{4+x}\) )
1) \(\int\limits^2_1\dfrac{\sqrt{x^2-1}}{x}dx\)
2) \(\int x.\sqrt{1-x^4}dx\)
3)\(\int\dfrac{1}{x^2.\sqrt{25-x^2}}dx\)
4) \(\int\dfrac{\sqrt{x^2-9}}{x^3}dx\)
Tính :
a) \(\int\limits^3_0\dfrac{x}{\sqrt{1+x}}dx\)
b) \(\int\limits^{64}_1\dfrac{1+\sqrt{x}}{\sqrt[3]{x}}dx\)
c) \(\int\limits^2_0x^2e^{3x}dx\)
d) \(\int\limits^{\pi}_0\sqrt{1+\sin2x}dx\)
Tính các tích phân sau :
a) \(\int\limits^{\dfrac{1}{2}}_{-\dfrac{1}{2}}\sqrt[3]{\left(1-x\right)^2dx}\)
b) \(\int\limits^{\dfrac{\pi}{2}}_0\sin\left(\dfrac{\pi}{4}-x\right)dx\)
c) \(\int\limits^2_{\dfrac{1}{2}}\dfrac{1}{x\left(x+1\right)}dx\)
d) \(\int\limits^2_0x\left(x+1\right)^2dx\)
e) \(\int\limits^2_{\dfrac{1}{2}}\dfrac{1-3x}{\left(x+1\right)^2}dx\)
g) \(\int\limits^{\dfrac{\pi}{2}}_{-\dfrac{\pi}{2}}\sin3x\cos5xdx\)
a) =
=
b) = =
=
c)=
d)=
=
e)=
=
g)Ta có f(x) = sin3xcos5x là hàm số lẻ.
Vì f(-x) = sin(-3x)cos(-5x) = -sin3xcos5x = f(-x) nên:
1, I = \(\int\limits^1_0\dfrac{2x+1}{x^2+x+1}dx\)
2,\(\int\limits^{\dfrac{1}{2}}_0\dfrac{5xdx}{\left(1-x^2\right)^3}\)
3, \(\int\limits^1_0\dfrac{2x}{\left(x+1\right)^3}dx\)
4, \(\int\limits^1_0\dfrac{4x-2}{\left(x^2+1\right)\left(x+2\right)}dx\)
5, \(\int\limits^1_0\dfrac{x^2dx}{x^6-9}\)
6, \(\int\limits^2_1\dfrac{2x-1}{x^2\left(x+1\right)}dx\)
1/ \(I=\int\limits^1_0\dfrac{2x+1}{x^2+x+1}dx=\int\limits^1_0\dfrac{d\left(x^2+x+1\right)}{x^2+x+1}=ln\left|x^2+x+1\right||^1_0=ln3\)
2/ \(\int\limits^{\dfrac{1}{2}}_0\dfrac{5x}{\left(1-x^2\right)^3}dx=-\dfrac{5}{2}\int\limits^{\dfrac{1}{2}}_0\dfrac{d\left(1-x^2\right)}{\left(1-x^2\right)^3}=\dfrac{5}{4}\dfrac{1}{\left(1-x^2\right)^2}|^{\dfrac{1}{2}}_0=\dfrac{35}{36}\)
3/ \(\int\limits^1_0\dfrac{2x}{\left(x+1\right)^3}dx\Rightarrow\) đặt \(x+1=t\Rightarrow x=t-1\Rightarrow dx=dt;\left\{{}\begin{matrix}x=0\Rightarrow t=1\\x=1\Rightarrow t=2\end{matrix}\right.\)
\(I=\int\limits^2_1\dfrac{2\left(t-1\right)dt}{t^3}=\int\limits^2_1\left(\dfrac{2}{t^2}-\dfrac{2}{t^3}\right)dt=\left(\dfrac{-2}{t}+\dfrac{1}{t^2}\right)|^2_1=\dfrac{1}{4}\)
4/ \(\int\limits^1_0\dfrac{4x-2}{\left(x^2+1\right)\left(x+2\right)}dx\)
Kĩ thuật chung là tách và sử dụng hệ số bất định như sau:
\(\dfrac{4x-2}{\left(x^2+1\right)\left(x+2\right)}=\dfrac{ax+b}{x^2+1}+\dfrac{c}{x+2}=\dfrac{\left(a+c\right)x^2+\left(2a+b\right)x+2b+c}{\left(x^2+1\right)\left(x+2\right)}\)
\(\Rightarrow\left\{{}\begin{matrix}a+c=0\\2a+b=4\\2b+c=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=0\\a=-c=2\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^1_0\left(\dfrac{2x}{x^2+1}-\dfrac{2}{x+2}\right)dx=\int\limits^1_0\dfrac{d\left(x^2+1\right)}{x^2+1}-2\int\limits^1_0\dfrac{d\left(x+2\right)}{x+2}=ln\dfrac{8}{9}\)
5/ \(\int\limits^1_0\dfrac{x^2dx}{x^6-9}\Rightarrow\) đặt \(x^3=t\Rightarrow3x^2dx=dt\Rightarrow x^2dx=\dfrac{1}{3}dt;\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=1\Rightarrow t=1\end{matrix}\right.\)
\(I=\dfrac{1}{3}\int\limits^1_0\dfrac{dt}{t^2-9}=\dfrac{1}{18}\int\limits^1_0\left(\dfrac{1}{t-3}-\dfrac{1}{t+3}\right)dt=\dfrac{1}{18}ln\left|\dfrac{t-3}{t+3}\right||^1_0=-\dfrac{1}{18}ln2\)
6/ Tương tự câu 4, sử dụng hệ số bất định ta tách được:
\(\int\limits^2_1\dfrac{2x-1}{x^2\left(x+1\right)}dx=\int\limits^2_1\left(\dfrac{3x-1}{x^2}-\dfrac{3}{x+1}\right)dx=\int\limits^2_1\left(\dfrac{3}{x}-\dfrac{1}{x^2}-\dfrac{3}{x+1}\right)dx\)
\(=\left(3ln\left|\dfrac{x}{x+1}\right|+\dfrac{1}{x}\right)|^2_1=3ln\dfrac{4}{3}-\dfrac{1}{2}\)