\(\int\sqrt{\dfrac{2+x}{2-x}}dx=\int\dfrac{2+x}{\sqrt{4-x^2}}dx\)
Đặt \(x=2sinu\Rightarrow dx=2cosu.du\)
\(\Rightarrow I=\int\dfrac{2+2sinu}{\sqrt{4-4sin^2u}}.2cosu.du=\int\left(2+2sinu\right)du=2u-2cosu+C\)
Trả biến: \(sinu=\dfrac{x}{2}\Rightarrow u=arcsin\left(\dfrac{x}{2}\right)\)
\(x=2sinu\Rightarrow x^2=4sin^2u=4-4cos^2u\Rightarrow cos^2u=1-\dfrac{x^2}{4}\)
\(\Rightarrow cosu=\sqrt{1-\dfrac{x^2}{4}}\)
Vậy \(I=2arcsin\left(\dfrac{x}{2}\right)-\sqrt{4-x^2}+C\)