Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
TRẦN THỊ DIỆU QUỲNH
Xem chi tiết
soyeon_Tiểu bàng giải
12 tháng 8 2016 lúc 9:52

Ta có:

20152017 + 20172015

= 20152017 + 1 + 20172015 - 1

= (20152017 + 12017) + (20172015 - 12015)

Do 20152017 + 12017 luôn chia hết cho 2015 + 1 = 2016; 20172015 - 12015 luôn chia hết cho 2017 - 1 = 2016

=> (20152017 + 12017) + (20172015 - 12015) chia hết cho 2016

=> 20152017 + 20172015 chia hết cho 2016 (đpcm)

NGO GIA HUY
6 tháng 4 2020 lúc 13:10

TAU KHONG BIET

Khách vãng lai đã xóa
Siêu Nhân Lê
Xem chi tiết
Nguyễn Thị Anh
16 tháng 10 2016 lúc 16:31

sử dụng đồng dư thức hoặc hằng đẳng thức

Hoàng Tử Lớp Học
Xem chi tiết
Nguyễn Minh Phương
19 tháng 10 2016 lúc 22:54

ngu người bài này mà không biết giải

Bạn Nguyễn Minh Phương kia tưởng mik học giỏi lắm à mà chê người khác , chỉ hok giỏi hơn vài người thôi bỏ tính đó đi 

Khách vãng lai đã xóa
Song Lam Diệp
Xem chi tiết
Akai Haruma
20 tháng 1 2018 lúc 17:13

Lời giải:

Ta có:

\(A=2017^{2017}+2019^{2018}=(2017^{2017}+1)+(2019^{2018}-1)\)

Áp dụng các hằng đẳng thức đáng nhớ:

\(2017^{2017}+1=2017^{2017}+1^{2017}=(2017+1)(2017^{2016}-2017^{2015}+....+1)=2018X\)

\(2019^{2018}-1=2019^{2018}-1^{2018}=(2019-1)(2019^{2017}+2019^{2016}+...+1)=2018Y\)

Do đó:

\(A=2018X+2018Y=2018(X+Y)\vdots 2018\)

Ta có đpcm.

Tiến Nguyễn
Xem chi tiết
Nguyễn Thị Phương Thảo
Xem chi tiết
Nguyễn Quang Đức
19 tháng 12 2016 lúc 21:58

Ta có: 20162016 + 20162017 = 20162016.(1+2016) = 20162016 . 2017 chia hết chi 2017

Trần Hoàng Ngân
19 tháng 12 2016 lúc 22:51

Giả sử 20162016 + 20162017 không chia hết cho 2017 
Ta có : 20162  = 4064256 = 2015 x 2017 + 1 
=> 2016=  1 ( mod 2017 ) 
=> (20162)^1008 = 11008 ( mod 2017 ) 
=> 20162016 = 1 ( mod 2017 ) 
Ta lại có : 20162016 x 2016 = 1 x 2016  ( mod 2017 )
=> 20162017 = 2016 ( mod 2017 ) 
Nên 20162016 + 20162017 = 0 ( mod 2017 ) 
Vậy điều đã giả sử là sai 
=> 20162016 x 20162017 chia hết cho 2017 . 
mình nha . Yêu , chúc bạn học thật tốt 
 

hoài anh
Xem chi tiết
Phạm Hùng Cường
Xem chi tiết
Phạm Minh Kiện
Xem chi tiết
 .
6 tháng 9 2019 lúc 19:23

\(2016^3-2016=2016.\left(2016^2-1\right)\)

\(=2016.\left(2016-1\right).\left(2016+1\right)\)

\(=2017.2016.2015⋮2017\) ( đpcm )

Lê Hồ Trọng Tín
6 tháng 9 2019 lúc 19:35

20163-2016=2016(20162-1)=2016.(2016-1)(2016+1)=2015.2016.2017 chia hết cho 2017

\(2016^3-2016\)

\(=2016\left(2016^2-1\right)\)

\(=2016.\left(2016-1\right)\left(2016+1\right)\)

\(=2015.2016.2017⋮2017\)

\(\Rightarrowđpcm\)

Bùi Mai Trang
Xem chi tiết
o0o I am a studious pers...
23 tháng 7 2016 lúc 21:20

\(19^{120}-1\)

\(=\left(18+1\right)^{120}-1\)

\(=\left(\left(18+1\right)^{60}\right)^2-1\)

\(=\left(\left(18+1\right)^2+1\right)\left(\left(18+1\right)^2-1\right)\)

\(=\left(\left(180+1\right)^2+1\right)\left(180+1\right)\left(18-1\right)\)

Ta thấy cả 3 tích đều có 18 nên => Tổng của chúng chia hết cho 18 Hay \(19^{120}-1\)chia hết cho 18