Chứng minh: 20162018+20182016 chia hết cho 2017
chứng minh 2015^2017+2017^2015 chia hết cho 2016
giúp minh với !!!!!!!!!!!!!!
Ta có:
20152017 + 20172015
= 20152017 + 1 + 20172015 - 1
= (20152017 + 12017) + (20172015 - 12015)
Do 20152017 + 12017 luôn chia hết cho 2015 + 1 = 2016; 20172015 - 12015 luôn chia hết cho 2017 - 1 = 2016
=> (20152017 + 12017) + (20172015 - 12015) chia hết cho 2016
=> 20152017 + 20172015 chia hết cho 2016 (đpcm)
Cho P= 1^2017+2^2017+3^2017+...+2016^2017, Q= 1+2+3+4+...+2016. Chứng minh P chia hết cho Q
sử dụng đồng dư thức hoặc hằng đẳng thức
cho P=1^2017 +2 ^2017 + ... + 2016^2017 ; Q = 1+2+3+...+2016. Chứng minh rằng P chia hết cho Q
ngu người bài này mà không biết giải
Bạn Nguyễn Minh Phương kia tưởng mik học giỏi lắm à mà chê người khác , chỉ hok giỏi hơn vài người thôi bỏ tính đó đi
chứng minh \(2017^{2017}+2019^{2018}\) chia hết cho 2018
Lời giải:
Ta có:
\(A=2017^{2017}+2019^{2018}=(2017^{2017}+1)+(2019^{2018}-1)\)
Áp dụng các hằng đẳng thức đáng nhớ:
\(2017^{2017}+1=2017^{2017}+1^{2017}=(2017+1)(2017^{2016}-2017^{2015}+....+1)=2018X\)
\(2019^{2018}-1=2019^{2018}-1^{2018}=(2019-1)(2019^{2017}+2019^{2016}+...+1)=2018Y\)
Do đó:
\(A=2018X+2018Y=2018(X+Y)\vdots 2018\)
Ta có đpcm.
Chứng minh rằng 2^2017 + 2017 chia hết cho 11. Giúp e với, tks mn.
Chứng minh : \(2016^{2016}+2016^{2017}\)chia hết cho 2017
Ta có: 20162016 + 20162017 = 20162016.(1+2016) = 20162016 . 2017 chia hết chi 2017
Giả sử 20162016 + 20162017 không chia hết cho 2017
Ta có : 20162 = 4064256 = 2015 x 2017 + 1
=> 20162 = 1 ( mod 2017 )
=> (20162)^1008 = 11008 ( mod 2017 )
=> 20162016 = 1 ( mod 2017 )
Ta lại có : 20162016 x 2016 = 1 x 2016 ( mod 2017 )
=> 20162017 = 2016 ( mod 2017 )
Nên 20162016 + 20162017 = 0 ( mod 2017 )
Vậy điều đã giả sử là sai
=> 20162016 x 20162017 chia hết cho 2017 .
mình nha . Yêu , chúc bạn học thật tốt
chứng minh rằng :2017 mũ 8 - 2017 mũ 7 chia hết cho 2016
chứng minh 2017^2017+2019^2018 chia hết cho 2018
Chứng minh 2016^3-2016 chia hết cho 2017
\(2016^3-2016=2016.\left(2016^2-1\right)\)
\(=2016.\left(2016-1\right).\left(2016+1\right)\)
\(=2017.2016.2015⋮2017\) ( đpcm )
20163-2016=2016(20162-1)=2016.(2016-1)(2016+1)=2015.2016.2017 chia hết cho 2017
\(2016^3-2016\)
\(=2016\left(2016^2-1\right)\)
\(=2016.\left(2016-1\right)\left(2016+1\right)\)
\(=2015.2016.2017⋮2017\)
\(\Rightarrowđpcm\)
a)Chứng minh rằng: 19120 - 1 chia hết cho 18
b) Chứng minh rằng : 20172016 - 1 chia hết cho 2016
\(19^{120}-1\)
\(=\left(18+1\right)^{120}-1\)
\(=\left(\left(18+1\right)^{60}\right)^2-1\)
\(=\left(\left(18+1\right)^2+1\right)\left(\left(18+1\right)^2-1\right)\)
\(=\left(\left(180+1\right)^2+1\right)\left(180+1\right)\left(18-1\right)\)
Ta thấy cả 3 tích đều có 18 nên => Tổng của chúng chia hết cho 18 Hay \(19^{120}-1\)chia hết cho 18