Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
♡ ♡ ♡ ♡ ♡
Xem chi tiết
Trịnh Trân Trân
2 tháng 1 2017 lúc 23:04

Hay quớ ak! Mơn m nhìu nha ný! <3 <3 <3 (not thả thính =))))

乡☪ɦαทɦ💥☪ɦųα✔
Xem chi tiết
Nguyễn Minh Đăng
7 tháng 10 2020 lúc 12:58

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\left(xy+yz+zx\right)\left(x+y+z\right)=xyz\)

\(\Leftrightarrow x^2y+xy^2+y^2z+yz^2+z^2x+zx^2+3xyz-xyz=0\)

\(\Leftrightarrow\left(x^2y+xy^2\right)+\left(yz^2+z^2x\right)+\left(zx^2+2xyz+y^2z\right)=0\)

\(\Leftrightarrow xy\left(x+y\right)+z^2\left(x+y\right)+z\left(x+y\right)^2=0\)

\(\Leftrightarrow\left(x+y\right)\left(xy+z^2+yz+zx\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

=> x = -y hoặc y = -z hoặc z = -x

Không mất tổng quát giả sử x = -y, khi đó:

\(\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=-\frac{1}{y^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{z^{2015}}\)

\(\frac{1}{x^{2015}+y^{2015}+z^{2015}}=\frac{1}{-y^{2015}+y^{2015}+z^{2015}}=\frac{1}{z^{2015}}\)

\(\Rightarrow\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{x^{2015}+y^{2015}+z^{2015}}\)

Khách vãng lai đã xóa
Trần Ngọc Tú
Xem chi tiết
Namikaze Minato
24 tháng 11 2018 lúc 23:21

Bạn có thể sử dụng BĐT thức Cô-si và xét trường hợp dấu bằng xảy ra nhé bạn !

Nguyễn Linh Chi
5 tháng 4 2020 lúc 21:21

Câu hỏi của Trần Ngọc Tú - Toán lớp 8 - Học toán với OnlineMath

Khách vãng lai đã xóa
One Two Three
Xem chi tiết
tiểu khải love in love
Xem chi tiết
Nguyễn Khánh Ly
1 tháng 11 2020 lúc 19:43
Với xyz \(\ne\) 0 ta có:

x + y + z = 0 \(\Leftrightarrow\)\(\hept{\begin{cases}y+z=-x\\x+y=-z\\x+z=-y\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}(y+z)^2=(-x)^2\\(x+y)^2=(-z)^2\\(x+z)^2=(-y)^2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y^2+2yz+z^2=x^2\\x^2+2xy+y^2=z^2\\x^2+2xz+z^2=y^2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y^2+z^2-x^2=-2yz\\x^2+y^2-z^2=-2xy\\x^2+z^2-y^2=-2xz\end{cases}}\)

Thay vào P ta được:

P=\(\frac{1}{-2yz}\)\(+\)\(\frac{1}{-2xy}\)\(+\)\(\frac{1}{-2xz}\)\(=\)\(\frac{-x}{2xyz}\)\(+\)\(\frac{-z}{2xyz}\)\(+\)\(\frac{-y}{2xyz}\)\(=\)\(\frac{-(x+y+z)}{2xyz}\)\(=\)\((x+y+z=0)\)

Vậy với \(x+y+z=0\)và \(xyz\ne0\)thì \(P=0\)

Khách vãng lai đã xóa
Nguyễn Thị Quỳnh Anh
Xem chi tiết
Pham Van Hung
3 tháng 12 2018 lúc 12:43

\(\left(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}\right)^2=1\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\frac{2}{xy}+\frac{2}{yz}-\frac{2}{xz}=1\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1+\frac{2}{xy}-\frac{2}{yz}+\frac{2}{xz}\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1+\frac{2z-2x+2y}{xyz}\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1+\frac{2z-2\left(y+z\right)+2y}{xyz}\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1+0=1\)

Trần Ngọc Tú
Xem chi tiết
Nguyễn Linh Chi
24 tháng 11 2018 lúc 22:51

Ta có

\(x+y+z+\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{y+x}=x+y+z\)

=> \(x+\frac{x^2}{y+z}+y+\frac{y^2}{z+x}+z+\frac{z^2}{y+x}=x+y+z\)

=> \(\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{y+x}=x+y+z\)

=> \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}=1\)

Clary
Xem chi tiết
Hồ Thu Giang
Xem chi tiết
Tôi Nghèo Kệ Đời Tôi
24 tháng 9 2015 lúc 23:29

có đố thêm 100 lần nữa tui cũng ko làm -_-

Trần Thị Loan
25 tháng 9 2015 lúc 7:21

Áp dung tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Theo bài cho \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)=> \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

=> y + z + 1 = 2x; x + z + 2 = 2y; x + y - 3 = 2z; x+ y + z = 1/2

+) x + y + z = 1/2 => y + z = 1/2 - x. Thay vào y + z + 1 = 2x ta được 1/2 - x + 1 = 2x => 3/2 = 3x => x = 1/2

+) x + y + z = 1/2 => x + z = 1/2 - y . Thay vào x + z + 2 = 2y ta được 1/2 - y + 2 = 2y => 5/2 = 3y => y = 5/6

=> x+ y + z = 1/2 + 5/6 + z = 1/2 =>  4/3 + z = 1/2 => z = 1/2 - 4/3 = -5/6

Vậy.....

sono chieri
2 tháng 10 2016 lúc 10:08

Ai cần mi làm ghi mất thời gian