Cho a+b+c=2007 và 1/a+b + 1/b+c + 1/c+a = 90 . Tính M = a/b+c + b/a+c + c/a+b
Cho a +b+c=2007 và 1/(a+b) + 1/(b+c) + 1/(c+a) = 1/90 Tính giá trị của S= a/(b+c) + b/ (c+a) + c /(a +b)
nhân 2 vế cho (a+b+c) ta được:
a+b+c/a+b + a+b+c/b+c + a+b+c/c+a= a+b+c/90
1 + c/a+b + 1+ a/b+c + 1+ b/c+a=2007/90
c/a+b + a/b+c + b/c+a= 2007/90 - 3=? tự tính
vậy kết quả cần tìm là:
Cho a +b+c=2007 và 1/(a+b) + 1/(b+c) + 1/(c+a) = 1/90 Tính giá trị của S= a/(b+c) + b/ (c+a) + c /(a +b)
cho a,b,c=2007 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{90}\)
tính f=\(\frac{a}{b}+c+\frac{b}{c}+a+\frac{c}{a}+b\)
Cho a+b+c=2007 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+d}=\frac{1}{90}\)
Tính \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Ta có: \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(3+S=\left(1+\frac{a}{b+c}\right)+\left(1+\frac{b}{c+a}\right)+\left(1+\frac{c}{a+b}\right)\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
\(=2007.\frac{1}{90}=\frac{223}{10}\Rightarrow S=\frac{223}{10}-3=\frac{193}{10}\)
\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=>S+3=\frac{a}{b+c}+\frac{b+c}{b+c}+\frac{b}{c+a}+\frac{c+a}{c+a}+\frac{c}{a+b}+\frac{a+b}{a+b}\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{c}{a+b}\right)\)
\(=2007.\frac{1}{90}=\frac{223}{10}\)
\(=>S=\frac{223}{10}-\frac{30}{10}=\frac{193}{10}\)
cho a+b+c=2007 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\)=\(\frac{1}{90}\)
tính S=\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Ta có: \(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2017\cdot\frac{1}{90}\)
\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=\frac{2017}{90}\)
\(\Rightarrow1+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}=\frac{2017}{90}\)
\(\Rightarrow A+3=\frac{2017}{90}\)
\(\Rightarrow S=\frac{2017}{90}-3=\frac{1747}{90}\)
từ giả thiết, ta có
\(\frac{1}{2017-a}+\frac{1}{2017-b}+\frac{1}{2017-c}=\frac{1}{90}\)
Mà \(S=\frac{a}{2017-a}+\frac{b}{2017-b}+\frac{c}{2017-c}=-3+\frac{2017}{2017-a}+\frac{2017}{2017-b}+\frac{2017}{2017-c}\)
=-3+\(2017\left(\frac{1}{2017-a}+\frac{1}{2017-b}+\frac{1}{2017-c}\right)=-3+\frac{2017}{90}=\frac{1747}{90}\)
vậy ...
^_^
Bài 1 : Cho a+b+c = 2007 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{90}\)
Tính S = \(\frac{a}{a+b}+\frac{b}{c+a}+\frac{c}{a+b}\)
Cho a + b + c = 2007 và 1/a + b + 1/b+c + 1/c + a = 1/90
Tính : S = a/b+c + b/c+a + c/a+b
Giải:
Ta có:
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{90}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=\dfrac{a+b+c}{90}\)
\(\Leftrightarrow\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}=\dfrac{a+b+c}{90}\)
\(\Leftrightarrow\dfrac{c}{a+b}+1+\dfrac{a}{b+c}+1+\dfrac{b}{c+a}+1=\dfrac{2007}{90}\)
\(\Leftrightarrow\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{c+a}=\dfrac{2007}{90}-3\)
\(\Leftrightarrow S=19,3\)
Vậy ...
Cho a + b + c = 2007 và \(\frac{1}{a+b}\)+ \(\frac{1}{b+c}\)+\(\frac{1}{c+a}\)= \(\frac{1}{90}\)Tính S = \(\frac{a}{b+c}+\frac{b}{c+a} +\frac{c}{a+b}\)
\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)+\left(\frac{b+c}{b+c}+\frac{a+c}{a+c}+\frac{a+b}{a+b}\right)\)
\(\Rightarrow S=2007.\frac{1}{90}-3=\frac{2007-270}{90}\)
cho a+b+c = 2007 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{90}\)tính giá trị biểu thức \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}\)