Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
shi nit chi
Xem chi tiết
Nguyễn Kiên
30 tháng 10 2016 lúc 11:06

A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + (4^7 + 4^8 + 4^9 + 4^10 + 4^11 + 4^12) + (4^13 + 4^14 + 4^15 + 4^16 + 4^17 + 4^18) + (4^19 + 4^20 + 4^21 + 4^22 + 4^23 + 4^24)

A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^6(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^12(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^18(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6)

A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6).(1+4^6+4^12+4^18)

A = 5460.(1+4^6+4^12+4^18)

A = 420 . 13(1+4^6+4^12+4^18) => A chia hết cho 420

A = 20.21.13(1+4^6+4^12+4^18) => A chia hết cho 20 ; 21

An Phước
Xem chi tiết
Kiều Vũ Linh
20 tháng 12 2023 lúc 8:01

A = 4 + 4² + 4³ + ... + 4²³ + 4²⁴

Số số hạng của A:

24 - 1 + 1 = 24

Do 24 ⋮ 2 nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 2 số hạng như sau:

A = (4 + 4²) + (4³ + 4⁴) + ... + (4²³ + 4²⁴)

= 20 + 4².(4 + 4²) + ... + 4²².(4 + 4²)

= 20 + 4².20 + ... + 4²².20

= 20.(1 + 4² + ... + 4²²) ⋮ 20

Vậy A⋮  20 (1)

Do 24 ⋮ 3 nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 3 số hạng như sau:

A = (4 + 4² + 4³) + (4⁴ + 4⁵ + 4⁶) + ... + (4²² + 4²³ + 4²⁴)

= 4.(1 + 4 + 4²) + 4⁴.(1 + 4 + 4²) + ... + 4²².(1 + 4 + 4²)

= 4.21 + 4⁴.21 + ... + 4²².21

= 21.(4 + 4⁴ + ... + 4²²) ⋮ 21

Vậy A ⋮ 21 (2)

Từ (1) và (2) ⇒ A ⋮ 20 . 21 (do 20 và 21 nguyên tố cùng nhau)

⇒ A ⋮ 420

Vậy A chia hết cho 20; 21; 420

Nguyễn Lê Phước Thịnh
20 tháng 12 2023 lúc 7:47

loading...  loading...  

Lê Duy Khang
Xem chi tiết
Nguyễn Ngọc Quý
9 tháng 9 2015 lúc 10:57

\(A=\left(4+4^2\right)+.......+\left(4^{23}+4^{24}\right)\)

\(A=20.1+20.2^4+.......+20.2^{24}\)

\(A=20.\left(1+2^4+..........+2^{24}\right)\)

Vậy A chia hết cho 20

\(A=\left(4+4^2+4^3\right)+........+\left(4^{22}+4^{23}+4^{24}\right)\)

\(A=4.21+4^4.21+......+4^{20}.21\)

\(A=21.\left(1+4^4+......+4^{20}\right)\)

Vậy A chia hết cho 21

\(A=\left(4+4^2+......+4^6\right)+.........+\left(4^{19}+4^{20}+4^{21}+4^{22}+4^{23}+4^{24}\right)\)\(A=13.420+4^6.13.420+........+4^{18}.13.420\)

\(A=420.13.\left(1+4^6+4^{12}+4^{18}\right)\)

Vậy A chia hết cho 420

Nguyễn Quang Hiếu
Xem chi tiết
Nguyễn Minh Quang
2 tháng 1 2022 lúc 9:38

ta có 

\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+..+\left(4^{23}+4^{24}\right)\)

\(=20+20\times4^2+..+20\times4^{22}\) thế nên A chia hết cho 20

\(A=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+..+\left(4^{22}+4^{23}+4^{24}\right)\)

\(=4\times21+4^4\times21+..+4^{22}\times21\) Thế nên A chia hết cho 21

thế nê A chia hết cho 20x21 =420

Khách vãng lai đã xóa
Nguyễn Thị Thu Hiền
Xem chi tiết
Le Thi Khanh Huyen
2 tháng 8 2015 lúc 13:03

Ta có:

A = 4 + 42 + 43 +......+ 423+ 424 

= (4 + 42)) + (43 +44)......+ (423+ 424)

=(4 + 42).1+(4 + 42).42+...+(4 + 42).422

=20.(1+42+...+422) chia hết cho 20

Ta lại có:

 A = 4 + 42 + 43 +......+ 423+ 424

=(4 + 42 + 43)+...+(422+423+424)

=(4 + 42 + 43).1+...+(4 + 42 + 43​).421

=21.(1+...+421) chia hết cho 21

Vì A chia hết cho 21 và 20 , mà ƯCLN(20;21)=1 => A chia hết cho 20 và 21 tức là A chia hết cho 20.21=420

Vậy...

Nguyễn Thị Ngọc Dương
3 tháng 8 2016 lúc 16:42

A = 4 + 42 + 43 +......+ 423+ 424

Ta thấy các cặp số liên tiếp cộng lại với nhau đều chia hết cho 20, ví dụ:

4 + 42 = 20, 4+ 4= 320, 4+ 4= 5120...

Vì đây là số chẵn, nên A sẽ chia hết cho 20.

Tiếp tục, BC (21 và 4) = {84; 168; 252; 336; 420; 504; 588....}

Như vậy, ta để ý thấy tích của các lũy thừa gồm số 4 và số mũ đều là số chẵn, BC của 4 và 21 cũng đều là số chẵn.

Vậy A chia hết cho 21.

Song, vì A chia hết cho 20 và 21, trong trường hợp này A chỉ có thể chia hết cho 20.21 = 420

thcslqd
5 tháng 12 2017 lúc 21:18

A=4+42+43+.....+423+424

A=1x(4+42)+42x(4+42)+...+422x(4+42)

A=20+42x20+...+422x20

A=20x(42+...+422) chia hết cho 20

tương tự với các bài khác

Đỗ Đức Minh
Xem chi tiết
Nhân Mã
Xem chi tiết
Nguyễn Thanh Hằng
6 tháng 6 2018 lúc 6:46

a/ Ta có :

\(A=4+4^2+.....+4^{23}+4^{24}\)

\(=\left(4+4^2\right)+\left(4^3+4^4\right)+....+\left(4^{23}+4^{24}\right)\) (12 nhóm)

\(=4\left(4+4^2\right)+4^3\left(4+4^2\right)+.......+4^{23}\left(4+4^2\right)\)

\(=4.20+4^3.20+.....+4^{23}.20\)

\(=20\left(4+4^3+...+4^{23}\right)⋮20\)

\(\Leftrightarrow A⋮20\left(đpcm\right)\)

b/ Ta có :

\(A=4+4^2+4^3+........+4^{23}+4^{24}\)

\(=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+.......+\left(4^{22}+4^{23}+4^{24}\right)\)

\(=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+....+4^{22}\left(1+4+4^2\right)\)

\(=4.21+4^4.21+....+4^{22}.21\)

\(=21\left(4+4^4+......+4^{22}\right)⋮21\)

\(\Leftrightarrow A⋮21\left(đpcm\right)\)

Vivian
6 tháng 6 2018 lúc 15:31

*A chia hết cho 20 : A có 24 lũy thừa.
Trước hết ta thấy rõ A chia hết cho 4 vì từng số hang của dãy số A chia hết cho 4
A có 24 lũy thừa nên ta chia thành 12 cặp lũy thừa
A = (4+4^2) + (4^3+4^4) + ...+ (4^23+4^24)
A = 4.(1+4) + 4^3.(1+4) + ...+ 4^23.(1+4)
A = 4.5 + 4^3.5 + .....+ 4^23.5
vậy A chia hết cho 5 và 4 nên A chia hết cho 20

*A chia hết cho 21 : A có 24 lũy thừa

Nhóm thành mỗi nhóm 3 lũy thừa ta được 8 nhóm lũy thừa
A = 4.(1+4+4^2) + ......+ 4^22.(1+4+4^2)
A = 4.21 + ......+4^22.21 => A chia hết 21

Vậy A chia hết cho 21.


*A chia hết cho 420 .

Ta có : A chia hết cho 20 và 21 mà 20 và 21 là nguyên tố cùng nhau nên
A chia hết cho 20.21 = 420 (Áp dụng: Một số đồng thời chia hết cho cả m và n. m và n đồng thời chỉ chia hết cho 1 và chính nó thì số đó chia hết cho tích mxn)

Vậy A chia hết cho 420 .

Aikatsu Mizuki
24 tháng 2 2019 lúc 10:29

a. Ta có:

A = 4 + 4 + 4 +......+ 4 + 4

A = \(\left(4+4^2\right)+\left(4^3+4^4\right)+......+\left(4^{23}+4^{24}\right)\)

A = \(4\left(4+4^2\right)+4^3\left(4+4^2\right)+......+4^{23}\left(4+4^2\right)\)

A = \(4.20+4^3.20+......+4^{23}.20\)

A = \(20\left(4+4^3+......+4^{23}\right)\)

\(\Leftrightarrow\) A \(⋮\) \(20\) (đpcm)

b. Ta có:

A = \(4+4^2+4^3+......+4^{23}+4^{24}\)

A = \(\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+......+\left(4^{22}+4^{23}+4^{24}\right)\)

A = \(4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+......+4^{22}\left(1+4+4^2\right)\)

A = \(4.21+4^4.21+......+4^{22}.21\)

A = \(21\left(4+4^4+......+4^{22}\right)\)

\(\Leftrightarrow\) A \(⋮\) \(21\) (đpcm)

c. Ta có:

A \(⋮\) \(20\) A \(⋮\) 21

\(\Rightarrow\) A \(⋮\) \(\left(20.21\right)\)

\(\Rightarrow\) A \(⋮\) \(420\) (đpcm)

Đinh Huyền Linh
Xem chi tiết
Nguyễn Ngọc Anh Minh
6 tháng 12 2023 lúc 7:42

a/

\(A=\left(4+4^2\right)+4^2\left(4+4^2\right)+...+4^{22}\left(4+4^2\right)=\)

\(=20\left(1+4^2+4^4+...+4^{22}\right)⋮20\)

b/

\(A=\left(4+4^2+4^3\right)+...+\left(4^{22}+4^{23}+4^{24}\right)=\)

\(=4\left(1+4+4^2\right)+...+4^{22}\left(1+4+4^2\right)=\)

\(=21\left(4+4^4+...+4^{22}\right)⋮21\)

c/

A đồng thời chia hết cho 20 và 21, mà 20 và 21 là 2 số nguyên tố cùng nhau

\(\Rightarrow A⋮20.21=420\)

Danh Đêm Vô
Xem chi tiết