cho biết rằng 2^10 = 1024.Chứng minh rằng 2^100 có ít nhất 31 chữ số
biết rằng 210=1024.chứng minh rằng 2100 có ít nhất 31 chũ số
210 \(\ge10^3\)có ít nhất 4 chữ số
=> \(2^{100}=\left[2^{10}\right]^{10}\ge10^{30}\)
Mà 1030 = 10000....000 [gồm 1 chữ số 1 và 30 chữ số 0]
Vậy 2100 có ít nhất 31 chữ số
Chứng minh rằng : Số \(2^{100}\) viết trong hệ thập phân có 31 chữ số
Ta có \(2^{100}=\left(2^{10}\right)^{10}=1024^{10}>1000^{10}=\left(10^3\right)^{10}=10^{30}\).
Ta chứng minh \(2^{100}< 10^{31}\Leftrightarrow\dfrac{1024^{10}}{1000^{10}}< 10\).
Ta có \(\dfrac{1024^{10}}{1000^{10}}< \dfrac{1025^{10}}{1000^{10}}=\left(\dfrac{41}{40}\right)^{10}\).
Dễ thấy \(\dfrac{41}{40}< \dfrac{40}{39}< ...< \dfrac{32}{31}\Rightarrow\left(\dfrac{41}{40}\right)^{10}< \dfrac{41}{40}.\dfrac{40}{39}...\dfrac{32}{31}=\dfrac{41}{31}< 10\Rightarrow\dfrac{1024^{10}}{1000^{10}}< 10\).
Do đó \(2^{100}\) viết trong hệ thập phân có 31 chữ số.
Chứng minh rằng 2100 có 31 chữ số
Chứng minh rằng :
a, 1030 < 2100< 1031
b, Từ đó suy ra 2100 là số có bao nhiêu chữ số?
\(a)\)Ta có :
\(10^{30}=\left(10^3\right)^{10}=1000^{10}< 1024^{10}=\left(2^{10}\right)^{10}=2^{100}\) \(\left(1\right)\)
\(2^{100}=2^{31}.2^6.2^{63}=2^{31}.64.\left(2^9\right)^7=2^{31}.64.512^7\) \(\left(2\right)\)
\(10^{31}=2^{31}.5^3.5^{28}=2^{31}.125.\left(5^4\right)^7=2^{31}.125.625^7\) \(\left(3\right)\)
Từ (1), (2) và (3) suy ra \(10^{30}< 2^{100}< 10^{31}\) ( đocm )
\(b)\) Ta có :
\(10^{30}\) là số nhỏ nhất có 31 chữ số
\(10^{31}\) là số nhỏ nhất có 32 chữ số
Mà \(10^{30}< 2^{100}< 10^{31}\)
\(\Rightarrow\)\(2^{100}\) có 31 chữ số
Vậy \(2^{100}\) có 31 chữ số
Chúc bạn học tốt ~
Cho các số nguyên dương a1,a2,...,a100 thỏa mãn\(\frac{1}{a1}+\frac{1}{a2}+...+\frac{1}{a100}\)>hoặc bằng \(\frac{101}{2}\)
a) Chứng minh rằng trong 100 số đã cho có ít nhất 2 số bằng nhau
b) Chứng minh rằng trong 100 số đã cho có ít nhất 3 số bằng nhau
Giúp mình nhé. Ai nhanh mình tick cho!
a) Giả sử không có 2 số nào bằng nhau trong các số nguyên dương đẫ cho.
Không mất tính tổng quát ta giả sử: \(a1< a2< a3< a4< ...< a100\)
Nên : \(a1\ge1;a2\ge2;a3\ge3;...;a100\ge100\)
\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\le\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)
Mặt khác, ta có : \(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}< \frac{1}{1}+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=1+99.\frac{1}{2}=\frac{101}{2}\)
( \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}< \frac{1}{2}+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}\)có 99 phân số 1/2 )
\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}< \frac{101}{2}\)trái với đề bài ra là \(\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\ge\frac{101}{2}\)
Vậy tồn tại trong 100 số đã cho ít nhất 2 số bằng nhau ( điều phải chứng minh ).
b) Giả sử trong 100 số trên chỉ tồn tại 2 số bằng nhau ( đã chứng minh 2 số bằng nhau ở phần a)
Không mất tính tổng quát, ta giả sử:
b) Làm tiếp : Giả sử a1=a2.
Nên : \(a1=a2>a3>a4>...>a100\)( áp dụng theo phần a)
\(\Rightarrow a1=a2\ge1;a3\ge2;a4\ge3;...;a100\ge99\)
\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\le\frac{2}{a1}+\frac{1}{a3}+...+\frac{1}{a100}=\frac{2}{1}+\frac{1}{2}+...+\frac{1}{99}\)
Mặt khác, ta có :\(\frac{2}{1}+\frac{1}{2}+...+\frac{1}{99}< 2+\frac{1}{2}+\frac{1}{3}+\frac{1}{3}+...+\frac{1}{3}=\frac{5}{2}+\frac{97}{3}=\frac{209}{6}\)
( \(\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}< \frac{1}{3}+\frac{1}{3}+...+\frac{1}{3}\)có 97 phân số 1/3 )
\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}< \frac{209}{6}< \frac{303}{6}=\frac{101}{2}\)trái với đề bài
Tương tự giả sử lấy bất kỳ 2 số bằng nhau khác tổng \(\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\)vẫn nhỏ hơn 101/2
Vậy tồn tại trong 100 số đã cho có ít nhất 3 số bằng nhau ( điều phải chứng minh).
1.Số a có s 31 chữ số 1 số b có 38 chữ số 1
Chứng minh rằng a . b - 2 chia hết cho 3
2.Cho Dãy số 1, 2 , 16 , 10 , 15 ......n(n+1)/2
Chứng minh rằng tổng của 2 số hạng liên tiếp của dãy số bao h cững là số chính phương
Cho số nguyên tố \(p>3\). Biết rằng có số tự nhiên \(n\) sao cho trong cách viết thập phân của số \(p^n\) có đúng \(20\) chữ số. Chứng minh rằng trong \(20\) chữ số này có ít nhất \(3\) chữ số giống nhau.
chứng minh rằng 2^100 là số có 31 chữ số khi viết kết quả của nó trong hệ thập phân.
chứng minh rằng 2^100 là số có 31 chữ số khi viết kết quả của nó trong hệ thập phân
Ta có:
2^100 = ﴾2^10﴿^10 = 1024^10
10^30 = ﴾10^3﴿^10 = 1000^10
Vì 1024^10 > 1000^10 nên 2^100 > 10^30 ﴾1﴿
Lại có:
2^100 = 2^31.2^63.2^6 = 2^31.512^7.64
và 10^31 = ﴾2.5﴿^31 = 2^31.5^31 = 2^31.5^28.5^3 = 2^31.625^7.125
Vì 2^31.512^7.64 < 2^31.625^7.125 nên 2^100 < 10^31﴾2﴿
Từ ﴾1﴿ và ﴾2﴿ => 2^100 viết trong hệ thập phân có 31 chữ số
Vậy số 2^100 viết trong hệ thập phân có 31 chữ số ﴾đpcm﴿
NHỚ TK MK NHA,MK ĐANG ÂM ĐIỂM
bạn ơi ko hiểu đoạn 2^100=2^31.2^63.2^6 = 2^31.512^7.64
bạn ơi ko hiểu đoạn 2^100 = 2^31,2^63,2^6=2^31.512^7.64