áp dụng BĐT cô-si để tìm GTNN của
\(y=\frac{x^3+1}{x^2};x>0\)
Tìm GTNN của \(M=x^2+3+\frac{1}{x^2+3}\)(Áp dụng BĐT cô-si
Áp dụng BĐT Cô - si cho hai số không âm ta được
\(x^2+3+\frac{1}{x^2+3}\ge2\sqrt{\left(x^2+3\right)\cdot\frac{1}{x^2+3}}=2\sqrt{1}=2\)
Dấu = xảy ra \(\Leftrightarrow x^2+3=\frac{1}{x^2+3}\)
\(\Leftrightarrow\left(x^2+3\right)^2=1\)
\(\Leftrightarrow x^4+6x^2+9=1\)
\(\Leftrightarrow x^4+6x^2+8=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)=0\) hoặc \(\left(x^2+4\right)=0\)
\(\Leftrightarrow x^2=-2\) hoặc \(x^2=-4\) (vô nghiệm) (Sai đề r hay s á b, mik nghĩ là \(x^2-3\)ms đúng)
Vậy GTNN của M là 2
cho A=\(\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
a) rút gọn A
b) Tìm GTNN của A(áp dụng BĐT cô si: A+B\(\ge2\sqrt{AB}\))
Áp dụng BĐT Cô-si để tìm GTLN của các biểu thức :
a) \(y=\frac{x}{2}+\frac{18}{x};x>0\)
b) \(y=\frac{x}{2}+\frac{2}{x-1};x>1\)
c) \(y=\frac{3x}{2}+\frac{1}{x+1};x>-1\)
Áp dụng bất đẳng thức cô si để
a)) tìm GTNN của y=x^2 +2/X^3
b) TÌM GTLN của y= x^2/[(x^2+2)^3]
Cái cậu Nguyễn Minh Tuấn kia đã không lm bài rồi lại còn yêu cầu người khác k nữa
Áp dụng bđt cô si tìm max
a) A=-x^2+2x+7
b) B=(x-y)(5+2x-2y)+14
Áp dụng bất đẳng thức Cô-si, tìm GTNN của biểu thức:
A= x2+\(\frac{2}{x^3}\)
A = \(\frac{x^2}{3}+\frac{x^2}{3}+\frac{x^2}{3}+\frac{1}{x^3}+\frac{1}{x^3}\ge5\sqrt[5]{\frac{1}{27}}\)
dấu bằng xảy ra khi x = \(\sqrt[5]{3}\)
Cho 1 nhỏ hơn bằng x nhỏ hơn bằng 3.Tìm GtNN của x+\(\frac{4}{x}\)(hãy sử dụng BĐT co-si)
cái này dễ mà, áp dụng bđt Cô-si : \(x+\frac{4}{x}\ge2\sqrt{x.\frac{4}{x}}=4\)
Dấu "=" xảy ra khi x=2
tìm GTNN (giúp mik zs mik cần gấp)
Q=\(\frac{2x}{x^2+x+1}\)
( dùng bđt Cô-si)
Áp dụng bđt Cô-si, tìm GTNN:\(y=x^2+\frac{2}{x^3};x>0\)
\(y=\frac{x^2}{3}+\frac{x^2}{3}+\frac{x^2}{3}+\frac{1}{x^3}+\frac{1}{x^3}\ge5\sqrt[5]{\frac{x^6}{27x^6}}=\frac{5}{\sqrt[5]{27}}\)
Dấu "=" xảy ra khi \(\frac{x^2}{3}=\frac{1}{x^3}\Leftrightarrow x=\sqrt[5]{3}\)
Áp dụng bất đẳng thức Cô-si cho 2 số không âm là \(x^2\) và \(\frac{2}{x^2}\), ta có:
\(x^2+\frac{2}{x^2}\ge2\sqrt{2}\)
Dấu bằng xảy ra khi \(x^2=\frac{2}{x^2}\) \(\Leftrightarrow x^4=2\)\(\Leftrightarrow x=\pm\sqrt[4]{2}\)
KL: Vậy Min=..... khi x=.....