x^2 + 8x + 7
A = x^15-8x^14+8x^13-8x^12+⋯-8x^2+8x-5 với x = 7
x=7
nên x+1=8
\(A=x^{15}-x^{14}\left(x+1\right)+x^{13}\left(x+1\right)-...-x^2\left(x+1\right)+x\left(x+1\right)-5\)
\(=x-5=7-5=2\)
Tính nhanh: M= x^15-8x^14+8x^13-8x^12+...- 8x^2+8x-2015 với x=7
thay x=7
ta có:7^15-8*7^14+887^13-8*7^12+...-8*7^2+8*7-2015
f(7)=7^15-8.7^14+8.7^13-8.7^12+...
-8.7^2+8.7-5=
= -7^14+8.7^13-8.7^12+...-8.7^2+8.7-5=
=7^13-8.7^12+...-8.7^2+8.7-5=
= -7^12+...-8.7^2+8.7-5=
=...= -7^2+8.7-5=7-5=2
Kết quả là 2
tinh nhanh M= x^15-8x^14+8x^13-8x^12+...- 8x^2+8x-2015 voi x=7
f(7)=7^15-8.7^14+8.7^13-8.7^12+...
-8.7^2+8.7-5=
= -7^14+8.7^13-8.7^12+...-8.7^2+8.7-5=
=7^13-8.7^12+...-8.7^2+8.7-5=
= -7^12+...-8.7^2+8.7-5=
=...= -7^2+8.7-5=7-5=2
Kết quả là 2
x^15 - 8x^14 + 8x^13 + 8x^12 + ...-8x^2 + 8x - 5 . cho biet x=7 . (8x có nghĩa là 8 nhân x nhang )
1 tính giá trị
B=x^15-8x^14+8x^13-8x^2+.....-8x^2+8x-5 với x=7
x=7 nên x+1=8
B=x^15-x^14(x+1)+x^13(x+1)-...-x^2(x+1)+x(x+1)-5
=x^15-x^15-x^14+x^14+...-x^3-x^2+x^2+x-5
=x-5
=7-5
=2
TÍnh giá trị biểu thức:
A= x15-8x14+8x13-8x12+...-8x2+8x-5 tại x= 7[gợi ý: Cách 1: thay x=7 và 8=(7+1); Cách 2: giữ nguyên x và 8=(x+1)]
Các bạn giúp mình với nhé
\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)
\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)
\(=2\)
\(\dfrac{7}{8x}+\dfrac{5-x}{4x^2-8x}=\dfrac{x-1}{2x\left(x-2\right)}+\dfrac{1}{8x-16}\)
\(\dfrac{7}{8x}+\dfrac{5-x}{4x^2-8x}=\dfrac{x-1}{2x\left(x-2\right)}+\dfrac{1}{8x-16}\)
ĐKXĐ: x ≠ 0; x ≠ 2
\(< =>\dfrac{14x-28+20-4x}{16x\left(x-2\right)}=\dfrac{8x-8+2x}{16x\left(x-2\right)}\)
Suy ra: 14x - 28 + 20 - 4x = 8x - 8 + 2x
<=> 14x - 8x - 2x - 4x = 28 - 20 - 8
<=> 0x = 0
Vậy: S = { x | x ≠ 0;2 }
P(x) = 8x^{3}+5x-1
Q(x) =4x^{2}-3x+7
R(x) =8x^{3}+8x^{2}+7x
P(x)+ Q(x) + R(x) =?
.
\(P\left(x\right)=8x^3\) + 5x -1
+ \(Q\left(x\right)\)= \(4x^2\) - 3x + 7
+ \(R\left(x\right)=8x^3+8x^2+7x\)
Tổng : 16x^3 + 12x^2 +9x + 6
\(\dfrac{x-1}{2x^2-4x}-\dfrac{7}{8x}=\dfrac{5-x}{4x^2-8x}-\dfrac{1}{8x-16}\)
\(\dfrac{x-1}{2x^2-4x}-\dfrac{7}{8x}=\dfrac{5-x}{4x^2-8x}-\dfrac{1}{8x-16}\) ( ĐKXĐ: \(x\ne0;x\ne2\) )
\(\Leftrightarrow\dfrac{x-1}{2x\left(x-2\right)}-\dfrac{7}{8x}=\dfrac{5-x}{4x\left(x-2\right)}-\dfrac{1}{8\left(x-2\right)}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)4}{8x\left(x-2\right)}-\dfrac{7\left(x-2\right)}{8x\left(x-2\right)}=\dfrac{2\left(5-x\right)}{8x\left(x-2\right)}-\dfrac{1x}{8x\left(x-2\right)}\)
\(\Rightarrow4x-4-7x+14=10-2x-x\)
\(\Leftrightarrow-3x+2x+x=10+4-14\)
\(\Leftrightarrow0=0\)
Vậy pt đã cho có nghiệm đúng với mọi x
\(B=x^{15}-8x^{14}+8x^{13}-8x^2+...-8x^2+8x\)\(-5\)
tại x=7
Vì x = 7
\(\Rightarrow\)\(x+1=8\)
\(\Rightarrow\)\(A=x^{15}\)\(-\)\(8x^{14}\)\(+\)\(8x^{13}\)\(-\)\(8x^{12}\)\(+\)... \(-\)\(8x^2\)\(+8x-5\)
\(=\)\(x^{15}\)\(-\left(x+1\right)x^{14}\)\(+\left(x+1\right)x^{13}\)\(-\left(x+1\right)x^{12}\)\(+\)... \(-\)\(\left(x+1\right)x^2\)\(+\left(x+1\right)x-5\)
\(=\)\(x^{15}\)\(-\)\(x^{15}\)\(-\)\(x^{14}\)\(+\)\(x^{14}\)\(+\)\(x^{13}\)\(-\)\(x^{13}\)\(-\)\(x^{12}\)\(+\)... \(-\)\(x^3\)\(-\)\(x^2\)\(+\)\(x^2\)\(+\)\(x\)\(-\)\(5\)
\(\Rightarrow\)\(x=-5\)
\(\Rightarrow\)\(A=7-5=2\)
Vậy \(A=2\) khi \(x=7\)